Descripción del proyecto
Unos biomarcadores biomecánicos para predecir la respuesta a la inmunoterapia
La inmunoterapia contra el cáncer provoca toxicidades graves en algunos casos, lo cual pone de relieve la importancia de los biomarcadores capaces de predecir de forma oportuna las personas que no responderán al tratamiento. Para solucionar este problema, el proyecto financiado con fondos europeos Immuno-Predictor trabaja bajo la hipótesis de que determinados aspectos biomecánicos del microentorno tumoral, como la rigidez del tumor, el estrés sólido, la perfusión y la hipoxia, son responsables de la resistencia a la inmunoterapia. La administración sistémica de inmunoterapia requiere un sistema vascular bien perfundido, lo cual no suele darse en los tumores rígidos e hipóxicos. Mediante el uso de métodos basados en ultrasonidos aplicados clínicamente y de modelización informática biomecánica en ratones portadores de tumores y en enfermos de cáncer, los científicos de Immuno-Predictor identificarán marcadores biomecánicos para predecir los resultados de la inmunoterapia.
Objetivo
Immunotherapy has revolutionized the treatment of multiple cancers and has already become a standard of care for some tumor types. However, a majority of patients do not benefit from current immunotherapeutics and many develop severe toxicities. Therefore, the identification of biomarkers to classify patients as likely responders or nonresponders to immunotherapy is a timely and of tremendous impact task. My hypothesis is that biomechanical aspects of the tumor microenvironment mediate resistance to immunotherapy. Specifically, many tumors stiffen as they grow and also, tumor growth within the host tissue generates mechanical forces, termed solid stress. Tumor stiffening and solid stress are distinct mechanical abnormalities that compress intratumoral blood vessels, causing hypo-perfusion and hypoxia. Systemic administration of immunotherapeutics requires a well-perfused vasculature, whereas hypo-perfusion and hypoxia promote immunosuppression, helping cancer cells to evade immune responses. The objective of the proposed research is the identification of novel Mechanical Biomarkers related to tumor stiffness, solid stress, perfusion and hypoxia for prediction of immunotherapy. Tumor-bearing mice will be developed and treated with immunotherapeutic drugs and clinically used methods will be combined with computational biomechanical modeling for measuring the Mechanical Biomarkers, making the research transferable to the clinic. The biomarkers will be benchmarked against tumor normalization strategies aiming to restore/normalize mechanical abnormalities and optimize immunotherapy. Finally, the clinical utility of the selected biomarkers will be evaluated in human tumors. Only few tumor-specific biomarkers are used in the clinic - based mainly on genomic analysis. This project is expected to lead to the first biomarkers for immunotherapy prediction exploiting tumor mechanics.
Ámbito científico
Programa(s)
Régimen de financiación
ERC-COG - Consolidator GrantInstitución de acogida
1678 Nicosia
Chipre