Descrizione del progetto
Un nanodispositivo ad alta efficienza colma il divario terahertz
La generazione, la manipolazione e il rilevamento delle onde elettromagnetiche sull’intero spettro di frequenze fungono da base per molti dei progressi compiuti nelle applicazioni di rilevamento, immaginografia, spettroscopia e di elaborazione dei dati. L’ultimo secolo ha assistito all’evoluzione impressionante di dispositivi funzionanti a frequenze sia inferiori a 0,1 THz che superiori a 50 THz. Tuttavia, mancano sistemi compatti che funzionano correttamente nella gamma dei terahertz, motivo per cui si fa spesso riferimento al «divario terahertz», ovvero una banda di frequenze comprese nella regione di 0,3-30 THz. Il progetto THOR, finanziato dall’UE, intende presentare il primo nanorilevatore veloce, silenzioso ed economico in grado di funzionare a temperatura ambiente nella gamma di 1-30 THz. Il progetto si svilupperà sulla scia delle ultime scoperte scientifiche nell’ambito dell’optomeccanica in cavità molecolare.
Obiettivo
The generation, manipulation and detection of electromagnetic waves across the entire frequency spectrum is the cornerstone of modern technologies, underpinning wide disciplines across sensing, imaging, spectroscopy and data processing, amongst others. Whilst the last century has witnessed an impressive evolution in devices operating at frequencies either below 0.1 THz (microwave and antenna technology) or above 50 THz (near-infrared and visible optical technology), in between the lack of suitable materials and structures for efficient electromagnetic manipulation has resulted in the so-called “THz gap” : a band of frequencies in the 0.3 – 30 THz region of the spectrum for which compact and cost-effective sources and detectors do not exist – even though their application has enormous potential in medical diagnostics, security, astronomy, and wireless communication.
In this project, we will demonstrate the first nano-scale, cost-effective, fast and low-noise detector working at room temperature in the 1 – 30 THz range by developing a radically new concept of signal up-conversion to visible/near-infrared (VIS/NIR) radiation, leveraging the latest scientific breakthroughs in the new scientific field of molecular cavity optomechanics. In particular, we will design and synthesize molecules with both large IR and Raman vibrational activity in that THz range to be integrated into plasmonic nano- and pico-cavities so that their vibration mediates the coherent transfer of energy from the THz to the laser signal driving the cavity. In our approach, we will also employ THz antennas to improve the coupling efficiency of the THz field to the molecules.
This bold vision, which builds on the fundamentals of light-matter interaction (science) and converges toward the on-chip integration in a silicon-compatible chip (technology), completely surpasses any previous technological paradigms related to the measurement of THz molecular vibration as well as its possible manipulation.
Campo scientifico
Parole chiave
Programma(i)
Invito a presentare proposte
Vedi altri progetti per questo bandoBando secondario
H2020-FETOPEN-2018-2019-2020-01
Meccanismo di finanziamento
RIA - Research and Innovation actionCoordinatore
46022 Valencia
Spagna