Descripción del proyecto
Un nanodispositivo de alta eficiencia cierra la brecha de los terahercios
La generación, manipulación y detección de ondas electromagnéticas en todo el espectro de frecuencias respaldan muchos de los avances en aplicaciones de detección, obtención de imágenes, espectroscopia y procesamiento de datos. El último siglo ha sido testigo de una evolución sorprendente en los dispositivos que funcionan a frecuencias inferiores a 0,1 THz o superiores a 50 THz. Con todo, no hay sistemas compactos que funcionen bien en el rango de los terahercios, lo que se conoce generalmente como «brecha de los terahercios»: una banda de frecuencias en la región de 0,3 a 30 THz. El objetivo del proyecto THOR, financiado con fondos europeos, es demostrar el primer nanodetector rápido, de bajo ruido y rentable que funciona a temperatura ambiente en el rango de 1 a 30 THz. El proyecto se basará en los últimos avances científicos en la optomecánica de cavidades moleculares.
Objetivo
The generation, manipulation and detection of electromagnetic waves across the entire frequency spectrum is the cornerstone of modern technologies, underpinning wide disciplines across sensing, imaging, spectroscopy and data processing, amongst others. Whilst the last century has witnessed an impressive evolution in devices operating at frequencies either below 0.1 THz (microwave and antenna technology) or above 50 THz (near-infrared and visible optical technology), in between the lack of suitable materials and structures for efficient electromagnetic manipulation has resulted in the so-called “THz gap” : a band of frequencies in the 0.3 – 30 THz region of the spectrum for which compact and cost-effective sources and detectors do not exist – even though their application has enormous potential in medical diagnostics, security, astronomy, and wireless communication.
In this project, we will demonstrate the first nano-scale, cost-effective, fast and low-noise detector working at room temperature in the 1 – 30 THz range by developing a radically new concept of signal up-conversion to visible/near-infrared (VIS/NIR) radiation, leveraging the latest scientific breakthroughs in the new scientific field of molecular cavity optomechanics. In particular, we will design and synthesize molecules with both large IR and Raman vibrational activity in that THz range to be integrated into plasmonic nano- and pico-cavities so that their vibration mediates the coherent transfer of energy from the THz to the laser signal driving the cavity. In our approach, we will also employ THz antennas to improve the coupling efficiency of the THz field to the molecules.
This bold vision, which builds on the fundamentals of light-matter interaction (science) and converges toward the on-chip integration in a silicon-compatible chip (technology), completely surpasses any previous technological paradigms related to the measurement of THz molecular vibration as well as its possible manipulation.
Ámbito científico
Not validated
Not validated
Palabras clave
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-FETOPEN-2018-2019-2020-01
Régimen de financiación
RIA - Research and Innovation actionCoordinador
46022 Valencia
España