Descripción del proyecto
Una estrategia de alto rendimiento para diseñar, sintetizar y cribar anticuerpos de camélidos
Los anticuerpos de camélidos de dominio único (nanoanticuerpos o VHH) derivan de los mamíferos de la familia «Camelidae» (llamas, camellos y alpacas). Los anticuerpos de camélidos carecen de una cadena ligera y presentan dos cadenas pesadas idénticas, son muy específicos y presentan un comportamiento monomérico estricto, alta termoestabiliad y solubilidad. El objetivo del proyecto AutoCAb, financiado con fondos europeos, es desarrollar una estrategia de alto rendimiento para diseñar, sintetizar y cribar repertorios de VHH dirigidos contra puntos funcionales de proteínas específicas. Cada VHH se diseñará individualmente a fin de lograr una alta estabilidad y afinidad de diana. Los investigadores emplearán metodologías innovadoras para lograr la síntesis de oligo-ADN a medida, así como métodos de aprendizaje automático para obtener anticuerpos estables, específicos y de alta afinidad para la investigación biomédica básica y aplicada.
Objetivo
We propose to develop the first high-throughput strategy to design, synthesize, and screen repertoires comprising millions of single-domain camelid antibodies (VHH) that target desired protein surfaces. Each VHH will be individually designed for high stability and target-site affinity. We will leverage recent methods developed by our lab for designing stable, specific, and accurate backbones at interfaces, the advent of massive and affordable custom-DNA oligo synthesis, and machine learning methods to accomplish the following aims:
Aim 1: Establish a completely automated computational pipeline that uses Rosetta to design millions of VHHs targeting desired protein surfaces. The variable regions in each design will be encoded in DNA oligo pools, which will be assembled to generate the entire site-targeted repertoire. We will then use high-throughput binding screens followed by deep sequencing to characterize the designs’ target-site affinity and isolate high-affinity binders.
Aim 2: Develop an epitope-focusing strategy that designs several variants of a target antigen, each of which encodes dozens of radical surface mutations outside the target site to disrupt potential off-target site binding. The designs will be used to isolate site-targeting binders from repertoires of Aim 1.
Each high-throughput screen will provide unprecedented experimental data on target-site affinity in millions of individually designed VHHs.
Aim 3: Use machine learning methods to infer combinations of molecular features that distinguish high-affinity binders from non binders. These will be encoded in subsequent designed repertoires, leading to a continuous “learning loop” of methods for high-affinity, site-targeted binding.
AutoCAb’s interdisciplinary strategy will thus lead to deeper understanding of and new general methods for designing stable, high-affinity, site-targeted antibodies, potentially revolutionizing binder and inhibitor discovery in basic and applied biomedical research.
Ámbito científico
Palabras clave
Programa(s)
Régimen de financiación
ERC-COG - Consolidator GrantInstitución de acogida
7610001 Rehovot
Israel