Livrables
Final public oriented report and public outreach programme complete This public engagement will be complemented by a tour in a vehicle fuelled by liquids from the plant which WRG Europe will coordinate This will be complemented by an engaging educational YouTube series that will be filmed during the tour covering different aspects of the technology which will be targeted towards the general public to boost consumer acceptance and public awareness To be completed between months 12 and 62 Refers to task 99
Feedstock composition and system mass/energy balanceFeedstock composition and system mass/energy balance. To determine feedstock composition and mass/energy balances to inform design specifications and reactor design limits. This task will also establish mass and energy balances for the system to understand flowrates, and process heat/cooling demands. Results and operational experience from a dedicated 30kg/h pilot plant at FRA will be used as guidelines for the design. To be carried out until M4. Refers to task 2.1
Definition of scope of sustainability metricsDefinition of scope of sustainability metrics. The will define the scope of the LCA in order to determine the methods and the choices that will be adopted during the study. This is to be completed between months 5 and 10. Refers to task 6.2
GHG savings quantifiedGHG savings quantified This is designed to facilitate the completion of all calculations needed to assess the calculation of Greenhouse gas GHG emission savings of the biofuel produced in the Project Using the data gathered in the previous tasks the Greenhouse gas GHG emission savings of the biofuel produced in the Project will be determined This will be completed between months 19 and 56 Refers to task 65
Catalogue of regulatory issuesCatalogue of regulatory issues. An intelligence and preparatory action aimed at collecting and sharing specific knowledge to better implement project actions and successful solutions delivered by the project in the follow up. The final output is a document and a highly informative, easy to use and simple database. The results will be instrumental to T8.2 and T8.3. This is to be completed in months 3 and 14. Refers to task 8.4
Performance results of residual syngas for CHP generationPerformance results of residual syngas for CHP generation Performance of theresidual syngas fuel will be monitored to obtain combustion knocking emissions and energy efficiency data This is to be completed between months 43 and 60 Refers to task 45
Evaluation of occupational health risks associated to the integrated TCR/PSA/HDO technologyEvaluation of occupational health risks associated to the integrated TCRPSAHDO technology The main exposure scenarios during the production process of the fuels will be defined and the occupational health risks associated to the exposure to chemical substances will be evaluated This will be completed by month 60 Refers to task 52
Social sustainability report describing the social impact of the 5 TCR/PSA/HDO expected on the local and regional community and project stakeholdersSocial sustainability report describing the social impact of the 5 TCRPSAHDO expected on the local and regional community and project stakeholders This is to be completed by month 60 Refers to work package 5
Conference day proceedingsConference day proceedings To engage with the international community of bioenergy engineers and researchers as well as international industries at least 2 halfday workshops will be held during the European Biomass Conference and Exhibition thatis organized annually by ETA A final project conference will also be organized 1 full day targeting the international research community industries financial institutions and regulators This is to be completed between months 6 and 62 This refers to task 96
Comprehensive environmental sustainability reportComprehensive environmental sustainability report This will be completed in month 62 and refers mainly to work carried out in work package 6
Performance results of char for generation of energy through gasificationPerformance results of char for generation of energy through gasification Tests using biochar will be performed in a pilot scale updraft gasifier located at Fraunhofer Syngas compositional analysis calorific value tar formation and gasifier performance will be monitored and recorded to determine the feasibility of using char from organic wastes as a fuel for gasifiers To be completed between months 41 and 59 Refers to task 46
LCA of commercial scale TCR/PSA/HDO unitLCA of commercial scale TCRPSAHDO unit This will forecast the environmental and health impacts of a commercial TCRPSAHDO system applying a scaleup approach The results obtained by Aspen Plus on energy and material balances as well as on thepreliminary sizing of major units will allow the estimation of the overall process conversions the energy consumption both thermal and electric and the waste stream production This will be completed between months 24 and 56 Refers to task 66
Pot trials complete and report analyzing the ability for nutrient uptake from char and ashPot trials complete and report analyzing the ability for nutrient uptake from char and ash The ash contains nutrients mainly phosphorus and potassium that can be used for nutrient loops in agriculture or horticulture The plant availability of the containednutrients within the various ash types bottom and fly ash will be investigated through pot and germination tests at lab scale To be completed between months 42 and 64 Refers to task 46
State of the art LCA model for TCR application selectedState of the art LCA model for TCR application selected. Establishment of state of the art LCA approaches applied to bio-refinery systems will be assessed and taken into consideration for the selection process. A full LCA review publication will be disseminated through this task. This will be completed between months 1 and 6. Refers to task 6.1
Data sets from upgrading of chars to improve plant effluent water qualityData sets from upgrading of chars to improve plant effluent water quality The sorption capacity of the chars produced by the demonstrator will be further assessed for nutrients phosphorus and nitrogen reduction and ability to reduce Organic load CODlevel reduction in waste plant effluent water This is to be completed between months 42 and 64 Refers to task 47
Business potential analysis reportBusiness potential analysis report This will build on the scenario analysis from T72 to deliver estimates of the business potential of the technology The analysiswill be complemented by a comprehensive assessment of competing technologies for similar feedstock to product value chains The results from Tasks 7173 will be summarised in a Business Potential Report The report will be developed with the support and input from ENG and FRA This will be complted between months 42 and 57
Map of scenarios for alternative use of feedstocksMap of scenarios for alternative use of feedstocks. Scenarios analysing of alternative uses of the feedstock will be generated together with the feedstock suppliers. This is to be completed between months 10-15. Refers to task 6.3
Characterisation of synthetic diesel and synthetic gasoline fractionsAnalysis of each gasoline and diesel fraction will be executed for the evaluation of combustion properties by chemical physical characterization and performing by engine combustion teat according to European standards emission cycles for fossil fuels Testing should evaluate suitability of HDO oil for blending with conventional fossil fuels as refinery feed To be completed between months 46 and 58 Refers to task 43
Full ash characterization in terms of heavy metalsFull ash characterization in terms of heavy metals Ash from the plant as receivedas well as post gasification will be fully characterized in terms of their heavy metal concentrations To be completed between months 41 and 52 Refers to task 46
Description of consumer perceptions towards synthetic fuel productsDescription of consumer perceptions towards synthetic fuel products. A set of socio-economic indicators will be defined in order to evaluate the socio-economic impacts of the project. The methodology will be based on the Guidelines for Social Life Cycle Assessment developed by SETAC. This is to be completed between months 18 and 40. Refers to task 5.1
Data describing consistency of feedstock composition.Data describing consistency of feedstock composition Chemical and physical analysis of all feedstock inputs Full feedstock characterisation will be achieved using proximate and ultimate analysis techniques applied according to ASTM standard test methods for biomass Continuous analysis of the feedstock will determine any fluctuations or variations of feedstock quality and characteristics entering thedemonstration plant This is to be completed between months 30 and 61 Refers to task 41
Map of positive and negative perceptions of local/regional stakeholders towards the integrated TCR/PSA/HDO technologyMap of positive and negative perceptions of localregional stakeholders towards the integrated TCRPSAHDO technology Fields of interest 21 subcategories in the SETAC nomenclature will be identified and classified depending upon the project relevance for instance fair salary equal opportunities community engagement localemployment Technology development transparency supplier relationship new legislation and funding programs etc The best suited socioeconomic indicators related to the fields of interest mentioned above will be determined taking into account their relevance the data availability the possibility to be assessed etcThis is to be completed between months 18 and 58 Refers to task 51
Validation of synthetic fuels as fuel analogue based on 50000 mile engines testValidation of synthetic fuels as fuel analogue based on 50000 mile engines test This task will deliver full quantification of performance combustion and emissions characteristics of the synthetic fuel over 50 000 miles of engine lifetime Data will be logged throughout to monitor emissions and engine performance and regular 6000 miles service intervals will enable the engine to be assessed for any damage related to the synthetic fuels vs normal use This is to be completed between months 46 and 60 Refers to task 44
Regulatory impacts and risks scenarios in business developmentRegulatory impacts on the project and risks scenarios in business development During the entire duration of the project FRA with the help of UNIBO and LEI together with input from project partners will follow the implementation intervening where needed to examine specific problems and issues Based on the catalogue of the possible regulatory occurrences T85 all risks will be assessed and translated into preventive actionsThis is to be completed between months 3 and 65 Refers to task 85
A full range of analytical data on feedstocks, products and wastes produced by the demonstration, combined with successful testing for use of the fuels produced in road applications.A full range of analytical data on feedstocks products and wastes produced by the demonstration combined with successful testing for use of the fuels produced in road applications Refers to work package 4
Demonstration of an integrated TCR/PSA/HDO plant at Hehnburg using locally sourced feedstocks. To be completed by month 65. Refers to WP3.
Fully assembled integrated plantFully assembled and integrated plant. Integrated plant component fabrication and reactor assembly incl. auxiliaries and containerised housing. This will involve the procurement of key reactor auxiliary components, housing, motors, gaskets, valves, instrumentation gauges as well as fabrication of the main plant components. The assembly of the unit incl. fabrication of specialized components and further auxiliary components. This is to be completed between months 8 and 46. Refers to task 2.7
A Fully Operational TCR/HDO/PSA PlantA Fully Operational TCR/HDO/PSA Plant. To be completed by month 49. Refers to work package 2.
Mass and energy balance for plant at steady stateMass and energy balance for plant at steady state. Steady state operation of plant to validate mass and energy flows feeding into work packages 6 and 7. Refers to task 3.1.
Plant decommissionedPlant decommissioned The final activity under this work package will be the decommissioning disassembly and removal of the TCR plant from Hohenburg To be completed in month 65 Refers to task 36
Safety tested and fully operational TCR/PSA/HDO plantSafety tested and fully operational TCR/PSA/HDO plant. Integrated plant safety tests and cold/ hot phase commissioning. This task requires the cold and hot phase commissioning of the integrated plant, incl. pressure tests and feedstockflow trail runs. To be completed between months 39 and 49. Refers to task 2.8
Hosted TOSYNFUEL demonstration days Direct engagement with stakeholders will be sought via a series of demonstration days in order to give a live demonstration of the working plant to potential early adopters of the technology and to all the actors of the supply chain At least 2 demonstration days will be organized in Hohenburg to present the TCR technology once the pilot plant will be operativeThis is to be completed between months 26 and 54 Refers to task 95
Branding materialsVisual identity and project branding material. All partners will be provided with these materials and will be asked to distribute it at events, workshops and all other opportunities to raise awareness on the project. This is to be completed between months 1 and 4 and refers to task 9.2
Website and social media feeds online. A project’s website will be published by month 3, in order to raise awareness about the project’s activities. All the website content will be promoted via social media (mainly linkedin and twitter) and electronic newsletter Social media engagement will be sought also through the launch of initiatives such as hashtags to engage with the general public, surveys and spontaneous public consultations among social media users (mainly Linkedin, Twitter). This will be completed between months 1 and 3 and refers to task 9.3
List of publications in trade magazinesList of publications in trade magazines This will summarize the results of the project in a fact based public oriented document The publication will thus feature chapters on the technology the feedstock the end uses LCA and sustainability risk management technoeconomic assessments and business cases This will be carried out between months 12 and 62 and refers to task 97
Final press reviewPress release and newsletters At least 4 press releases will be published one at the launch of the project one at midterm one before the final event and one at the end of the projectThis is to be completed between months 165 and refers to task 94
Publications
Auteurs:
Robert Daschner
Publié dans:
Open Access Government, Numéro January 2019, 2019, Page(s) 1, ISSN 2516-3817
Éditeur:
Adjacent Digital Politics Ltd
Auteurs:
Robert Daschner
Publié dans:
Open Access Government, Numéro January 2020, 2020, Page(s) 2, ISSN 2516-3817
Éditeur:
Adjacent Digital Politics Ltd
Auteurs:
Robert Daschner
Publié dans:
Open Access Government, Numéro April 2019, 2019, Page(s) 2, ISSN 2516-3817
Éditeur:
Adjacent Digital Politics Ltd
Auteurs:
Robert Daschner
Publié dans:
Open Access Government, Numéro April 2022, 2022, Page(s) 2, ISSN 2516-3817
Éditeur:
Adjacent Digital Politics Ltd
Auteurs:
Robert Daschner, Thorsten Hornung, Miloud Ouadi, Christopher Tuck, Stefano Capaccioli
Publié dans:
Impact, Numéro 2018/6, 2018, Page(s) 73-75, ISSN 2398-7073
Éditeur:
Science Impact Ltd
DOI:
10.21820/23987073.2018.6.73
Auteurs:
Hornung, A., Daschner, R., Eder, S., Ouadi, M., Jahangiri, H., Graute, L., Zhou, J., Lieftink, D., Grassi, A., Capaccioli, S., Contin, A., Righi, S., Marazza, D., Lama, V., Rapone, I., Langley, M., Tuck, C., Claret Carles, A.
Publié dans:
29th EUBCE - 2021, Proceedings, Numéro July 2021, annually, 2021, Page(s) 10, ISBN 978-88-89407-21-9
Éditeur:
ETA s.r.l.
DOI:
10.5071/29theubce2021-bp.1.2
Auteurs:
Hornung, A., Daschner, R., Ouadi, M., Zhou, J., Lieftink, D., Grassi, A., Capaccioli, S., Contin, A., Righi, S., Marazza, D., Baioli, F., Rapone, I., Langley, M., Tuck, C., Claret, A., Bastos, Proceedings, J.
Publié dans:
28th EUBCE - 2020, Proceedings, Numéro September 2020, annually, 2020, Page(s) 6, ISBN 978-88-89407-20-2
Éditeur:
ETA s.r.l.
DOI:
10.5071/28theubce2020-3bo.11.4
Auteurs:
Hornung, A., Apfelbacher, A., Daschner, R., Jäger, N., Ouadi, M., Hornung, T., Möbus, M., de Wit, E., Capaccioli, S., Contin, A., Righi, S., Marazza, D., Miglio, R., Peltenburg, A., Tuck, C., Sijstermans, L., Bastos, J.
Publié dans:
26th European Biomass Conference and Exhibition (EUBCE) - 2018, Proceedings, Numéro July 2018, annually, 2018, Page(s) 4, ISBN 978-88-89407-18-9
Éditeur:
ETA s.r.l.
DOI:
10.5071/26thEUBCE2018-3DO.6.5
Auteurs:
Serena Righi, Filippo Baioli, Diego Marazza, Roberto Porcelli, Andrea Contin
Publié dans:
Proceedings of the 12th Italian LCA Network Conference, Messina, 11-12th June 2018, Numéro November 2018, Annually, 2018, Page(s) 10, ISBN 978-88-8286-372-2
Éditeur:
ENEA
Auteurs:
Baioli, F., Marazza, D., Valmori, G., Righi, S.
Publié dans:
29th EUBCE - 2021, Proceedings, Numéro July 2021, annually, 2021, Page(s) 5, ISBN 978-88-89407-21-9
Éditeur:
ETA-Florence Renewable Energies
DOI:
10.5071/29theubce2021-4av.5.5
Auteurs:
Daschner, R., Apfelbacher, A., Walberer, J., Hornung, A.
Publié dans:
27th EUBCE - 2019, Proceedings, Numéro July 2019, annually, 2019, Page(s) 4, ISBN 978-88-89407-19-6
Éditeur:
ETA-Florence
DOI:
10.5071/27theubce2019-3do.3.1
Auteurs:
Hornung, A.; Daschner, R.; Eder, S.; Apfelbacher, A.; Ouadi, M.; Jahangiri, H.; Majewski, A.; Graute, L.; Zhou, J.; Lieftink, D.; Grassi, A.; Capaccioli, S.; Contin, A.; Righi, S.; Marazza, D.; Lama, V.; Macrelli, S.; Rapone, I.; Chiaberge, S.; Langley, M.; Tuck, C.; Claret Carles, A.
Publié dans:
30th EUBCE - 2022, Proceedings, Numéro July 2022, annually, 2022, Page(s) 8
Éditeur:
ETA s.r.l.
Auteurs:
Andreas Hornung, Hessam Jahangiri, Miloud Ouadi, Christopher Kick, Lisa Deinert, Benedikt Meyer, Jan Grunwald, Robert Daschner, Andreas Apfelbacher, Martin Meiller, Stefan Eder
Publié dans:
Applications in Energy and Combustion Science, Numéro 2666352X, 2022, Page(s) 12, ISSN 2666-352X
Éditeur:
Elsevier Ltd.
DOI:
10.1016/j.jaecs.2022.100088
Auteurs:
Agnieszka Korus, Juan-Pablo Gutierrez, Andrzej Szlęk, Jacek Jagiello, Andreas Hornung
Publié dans:
Chemical Engineering Journal, Numéro 13858947, 2022, Page(s) 13, ISSN 1385-8947
Éditeur:
Elsevier BV
DOI:
10.1016/j.cej.2022.137298
Recherche de données OpenAIRE...
Une erreur s’est produite lors de la recherche de données OpenAIRE
Aucun résultat disponible