Descrizione del progetto
Produzione decentralizzata ed economica di idrogeno dal biogas
La produzione di idrogeno (H2) da fonti di rifiuti a basso contenuto di carbonio può contribuire a decarbonizzare il sistema energetico in modo sostenibile. Il biogas generato nelle discariche e dalla digestione anaerobica dei rifiuti organici, compresi i fanghi di trattamento delle acque reflue, è una materia prima promettente. Il progetto BIOROBURplus, finanziato dall’UE, prevede di far progredire il livello di preparazione tecnologica di un reattore di reforming ossidativo diretto del biogas sviluppato in un progetto precedente per la produzione sostenibile e decentralizzata di H2 purissimo dal biogas, senza la rimozione preliminare di CO2. L’obiettivo del team è un’efficienza energetica molto elevata della conversione del biogas in H2 con: innovazione tecnica che porta a un maggiore recupero di calore interno; recupero di calore sia a pressione che a temperatura bassa; utilizzo dei gas di scarico del processo per fornire il calore per i due punti precedenti.
Obiettivo
BioROBURplus builds upon the closing FCH JU BioROBUR project (direct biogas oxidative steam reformer) to develop an entire pre-commercial fuel processor delivering 50 Nm3/h (i.e. 107 kg/d) of 99.9% hydrogen from different biogas types (landfill gas, anaerobic digestion of organic wastes, anaerobic digestion of wastewater-treatment sludges) in a cost-effective manner.
The energy efficiency of biogas conversion into H2 will exceed 80% on a HHV basis, due to the following main innovations:
1) increased internal heat recovery enabling minimisation of air feed to the reformer based on structured cellular ceramics
coated with stable and easily recyclable noble metal catalysts with enhanced coking resistance; 2) a tailored pressure-temperature-swing adsorption (PTSA) capable of exploiting both pressure and low T heat recovery from the processor to
drive H2 separation from CO2 and N2; 3) a recuperative burner based on cellular ceramics capable of exploiting the low
enthalpy PTSA-off-gas to provide the heat needed at points 1 and 2 above.
The complementary innovations already developed in BioROBUR (advanced modulating air-steam feed control system for coke growth control; catalytic trap hosting WGS functionality and allowing decomposition of incomplete reforming products; etc.) will allow to fully achieve the project objectives within the stringent budget and time constraints set by the call.
Prof. Debora Fino, the coordinator of the former BioROBUR project, will manage, in an industrially-oriented perspective, the work of 11 partners with complementary expertise: 3 universities (POLITO, KIT, SUPSI), 3 research centres (IRCE, CPERI, DBI), 3 SMEs (ENGICER, HST, MET) and 2 large companies (ACEA, JM) from 7 different European Countries.
A final test campaign is foreseen at TRL 6 to prove targets achievement, catching the unique opportunity offered by ACEA to
exploit three different biogas types and heat integration with an anaerobic digester generating the biogas itself.
Campo scientifico
- engineering and technologyenvironmental biotechnologybioremediationbioreactors
- engineering and technologymaterials engineeringceramics
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energyhydrogen energy
- engineering and technologyenvironmental engineeringenergy and fuelsenergy conversion
Parole chiave
Programma(i)
- H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy Main Programme
- H2020-EU.3.3.8.2. - Increase the energy efficiency of production of hydrogen mainly from water electrolysis and renewable sources while reducing operating and capital costs, so that the combined system of the hydrogen production and the conversion using the fuel cell system can compete with the alternatives for electricity production available on the market
Argomento(i)
Meccanismo di finanziamento
RIA - Research and Innovation actionCoordinatore
10129 Torino
Italia