Objetivo
The primary goal of each retailer is to “understand your customers”. Our interviews with retailers show a primary demand from the retail industry for predicting a customer's next demand. Surprisingly , even a complete record of past purchases (and returns) is not sufficient to understand how items in a company's catalog do or do not connect with the customer's general tastes, lifestyle and aspirations. Moverover, from a business perspective, any efficiency gains in the logistics of supplier management, shipping and handling are rather minor, compared to the gains one could obtain from a better understanding of the customers’ personalities and habits. Given that the customer demands trigger proactive stocking and fashion production, this appears as a logical consequence.
In this project, we want to consolidate and extend existing European technologies in the area of database management, data mining, machine learning, image processing, information retrieval, and crowdsourcing to strengthen the positions of European fashion retailers among their world-wide competitors. Our choice for the fashion sector is a concise one: i) as a multi-billion euro industry, the fashion sector is extremely important for the European economy; ii) Europe already has a solid position in the world fashion stage, however, to maintain its position and keep up with the competitors, European fashion industry needs the help of advanced technology; and iii) European fashion industry provides an excellent exercise for new technologies, because it is a multi-sectorial by itself (i.e. imposes challenging data integration issues), it has a short life-cycle (i.e. requires timely reaction to the current events) and it involves diverse languages and cultures.
The main outcome of the FashionBrain project is the improvement of the fashion industry value chain obtained thanks to the creation of novel on-line shopping experiences, the detection of influencers, and the prediction of upcoming fashion trends. Tangible outcomes will include software, demonstrators, and novel algorithms for a data-driven fashion industry.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- natural sciencescomputer and information sciencesdata sciencebig data
- natural sciencescomputer and information sciencesdata sciencenatural language processing
- natural sciencescomputer and information sciencesdata sciencedata mining
- natural sciencescomputer and information sciencesartificial intelligencemachine learningdeep learning
- natural sciencescomputer and information sciencesartificial intelligencecomputational intelligence
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-ICT-2016-1
Régimen de financiación
IA - Innovation actionCoordinador
S10 2TN Sheffield
Reino Unido