Ziel
SafeClouds is a research project supported by EASA and powered by a full spectrum of aviation stakeholders (Airlines, Airports, ANSPs, Eurocontrol, Research Entities, Safety Agencies) that develops cutting-edge technologies for aviation safety assurance in a cost-effective manner. SafeClouds proposes a data-driven approach to achieve a deeper understanding of the dynamics of the system, where risks are pro-actively identified and mitigated in a continuous effort to enhance the already excellent European aviation safety records.
SafeClouds develops an innovative aviation safety data analysis approach. Currently each stakeholder owns different isolated datasets and data-sharing paradigms are rare. However, the combination of those datasets is critical in discovering unknown safety hazards and in understanding and defining a performance-based system safety concept. The new data-driven paradigm, capable of extracting safety intelligence in a fast, connected and inexpensive way requires the collaboration of aviation and IT entities sharing their raw datasets, tools, techniques and information.
SafeClouds high level objectives are:
- To define a user-requirement driven approach for data mining in aviation safety, covering several current safety challenges within airlines and runway operations.
- To develop novel data structures and safety intelligence representation. Given the complexity of the datasets, SafeClouds aims to solve their current challenges in data handling and knowledge discovery.
- To develop the proof of concept and validate in a laboratory the safety data analysis paradigms, at different levels: historical analysis, predictive analytics, automatic safety data monitoring and unknown hazards identification.
- To assemble a group of entities that encompasses the entire data-cycle for a unified, achievable vision for the future of safety analytics in Europe, including: users, data providers, data infrastructure researchers, operators and data scientists.
Wissenschaftliches Gebiet
- natural sciencescomputer and information sciencescomputer securitydata protection
- natural sciencescomputer and information sciencesdata sciencedata mining
- natural sciencescomputer and information sciencesartificial intelligencemachine learningdeep learning
- social sciencessocial geographytransporttransport planningair traffic management
- natural sciencescomputer and information sciencesartificial intelligencecomputational intelligence
Programm/Programme
Thema/Themen
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenUnterauftrag
H2020-MG-2016-SingleStage-INEA
Finanzierungsplan
RIA - Research and Innovation actionKoordinator
28007 Madrid
Spanien
Auf der Karte ansehen
Beteiligte (14)
80686 Munchen
Auf der Karte ansehen
01360 SAINT GENIS POUILLY
Auf der Karte ansehen
Die Organisation definierte sich zum Zeitpunkt der Unterzeichnung der Finanzhilfevereinbarung selbst als KMU (Kleine und mittlere Unternehmen).
28022 Madrid
Auf der Karte ansehen
602 27 Norrkoping
Auf der Karte ansehen
1366 LYSAKER
Auf der Karte ansehen
34912 Istanbul
Auf der Karte ansehen
28027 Madrid
Auf der Karte ansehen
07620 LLUCMAJOR
Auf der Karte ansehen
08820 Prat De Llobregat El Barcelona
Auf der Karte ansehen
2628 CN Delft
Auf der Karte ansehen
80333 Muenchen
Auf der Karte ansehen
581 83 Linkoping
Auf der Karte ansehen
1130 Bruxelles / Brussel
Auf der Karte ansehen
28046 Madrid
Auf der Karte ansehen