Projektbeschreibung
Rationales Design von neuen Hefestämmen, die Lipide und aromatische Verbindungen erzeugen
In der Biotechnologie werden biologische Prozesse für industrielle und andere Zwecke ausgenutzt. Hefen ähneln winzigen Fabrikanlagen, die wegen ihrer Stoffwechselprodukte, Enzyme und Proteine weithin verwendet werden. Die Backhefe (Saccharomyces cerevisiae) ist vielleicht die älteste und am häufigsten verwendete Hefeart. Im Rahmen des EU-finanzierten Projekts CHASSY soll das Potenzial der Hefe voll ausgeschöpft werden, indem Stoffwechselkreisläufe neu gestaltet und das Wirtsspektrum um die ölhaltige Hefe Yarrowia lipolytica (die in der Lage ist, erhebliche Mengen an Lipiden oder Triglyceriden zu akkumulieren) und die temperaturtolerante Hefe Kluyveromyces marxianus erweitert wird. Mithilfe von Instrumenten der synthetischen Biologie wird das Team neue Stämme für Zellfabriken konstruieren, die drei hochwertige Produkte herstellen: die Oleochemikalien Docosanol und Octansäure sowie das aromatische Molekül Amorfrutin 1.
Ziel
CHASSY will unlock the full potential of the yeasts Saccharomyces cerevisiae, Yarrowia lipolytica and Kluyveromyces marxianus as cell factories for production of high value compounds which have applications in the cosmetic, nutraceutical and white biotechnology sectors. Current cell factory strains for these classes of product are restricted to proof-of-principle levels because of limited precursor supply, poor product tolerance and lack of versatility. CHASSY addresses these challenges by redesigning metabolic circuits and expanding the host range to include the oleaginous yeast, Y. lipolytica and the thermotolerant yeast, K. marxianus. The systems biology approach will integrate model-based design, construction and analysis of yeast strains, resulting in reconfigured metabolic networks optimised for the production of lipid and aromatic molecules. Construction of the chassis strains, using new and existing synthetic biology tools, will be directed by knowledge derived from a thorough systems biology comparison of the three yeast species, conducted using integrative data analysis and genome scale metabolic models. The chassis strains will be used to build cell factories to produce three specific high value products: the oleochemicals, Docosanol and Octanoic acid; and the aromatic molecule, Amorfrutin 1. These new cell factory strains will be evaluated under industrial conditions to produce data that will further improve the chassis platforms. The major outcomes of this project will be (1) a new set of chassis yeast strains that are widely applicable for development of industrial cell factories; (2) the knowledge and technology to readily build and evaluate new chassis tailored to specific applications; (3) prototype cell factory strains producing three high value metabolites for commercial exploitation; (4) a dissemination and exploitation strategy to ensure that European SMEs benefit from the knowledge base, platform chassis and resources generated in CHASSY.
Wissenschaftliches Gebiet
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteinsproteomics
- natural sciencesbiological sciencesbiochemistrybiomoleculeslipids
- natural scienceschemical sciencesorganic chemistryaromatic compounds
- natural scienceschemical sciencesorganic chemistryamines
- natural sciencesbiological sciencesgeneticsgenomes
Schlüsselbegriffe
Programm/Programme
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenUnterauftrag
H2020-NMBP-BIO-2016
Finanzierungsplan
RIA - Research and Innovation actionKoordinator
T12 YN60 Cork
Irland