Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Studying, Measuring and Altering Consciousness through information theory in the electrical brain

Objectif

What is consciousness? Can it be measured? While humankind has struggled with these questions for millennia, our project will focus on more modest but nonetheless ambitious and related goals. Inspired by recent developments in neuroscience and the potential role of fundamental concepts such as information integration and algorithmic complexity, we will study, model, quantify, and alter observable aspects of consciousness. Our vision is that consciousness will someday be electromagnetically measured and altered, and that the associated needed insights will prove crucial to the development cognitive sciences.
The conceptual framework of the project rests on information theoretic developments that link consciousness to the amount of information that a physical system can represent and generate as an integrated whole, and from the related idea that consciousness can be quantified by metrics reflecting information processing and representation complexity.
Supported by computational neuroscience models, we aim to create non-invasive consciousness-probing technologies integrating electro- and magneto-encephalography, peripheral and non-invasive brain stimulation (NIBS) with advanced techniques to analyse brain activity – including functional and effective connectivity. Based on the derived brain activity metrics, we will explore intervention, ie the use of NIBS to alter consciousness. To achieve these goals we will pursue computational neuroscience models and human studies – in perception, sleep, anaesthesia, locked-in syndrome, disorders of consciousness, and in utero – supported by machine learning to disentangle the essential aspects of consciousness.
The project will also explore the ethical implications of such technologies and the prospects for clinical translation. If successful, this paradigm-shifting work will have profound social and clinical impact and provide key insights in fundamental neuroscience and artificial cognition research.

Appel à propositions

H2020-FETOPEN-2014-2015

Voir d’autres projets de cet appel

Sous appel

H2020-FETOPEN-2014-2015-RIA

Coordinateur

STARLAB BARCELONA SL
Contribution nette de l'UE
€ 612 625,00
Adresse
AVENIDA TIBIDABO 47 BIS
08035 Barcelona
Espagne

Voir sur la carte

PME

L’entreprise s’est définie comme une PME (petite et moyenne entreprise) au moment de la signature de la convention de subvention.

Oui
Région
Este Cataluña Barcelona
Type d’activité
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Liens
Coût total
€ 612 625,00

Participants (7)