Ziel
Today, the amount of telemetry data from the sensors in the upper stages of a launch vehicle is very restricted, due to limited on-board-computing capacities combined with limited data bandwidth to ground. As a result, no detailed information about the various phases of the flight is available.
Massively extended Modular Monitoring for Upper Stages (MaMMoTH-Up) will improve the amount of monitored data by a factor of more than 2500 by integrating four key objectives, which are
1. a self-configuring monitoring framework that will selectively observe, pre-process, and compress sensor data,
2. Components off the Shelf (COTS) that provide improved computing performance on a launcher,
3. design solutions guaranteeing the required levels of dependability, even when using relatively unreliable COTS components, and
4. a tight coupling with advanced dependability analysis.
Achieving these 4 goals is scientifically and practically highly relevant. A demonstrator at TRL 6 will show the advantages of the new monitoring infrastructure and a virtual prototype proves the advanced dependability enhancements. Thus, MaMMoTH-Up will provide a framework and a proof-of-concept for next-generation avionics solutions for a launcher based on COTS. Moreover, the work plan provides the path to realization, potentially including a demo-flight at the end of the project. The proposed technology is complementary with on-going launcher developments. The usage of COTS will represent a direct advantage over competitors; this will decrease time-to-market and decrease the European dependence on external suppliers.
MaMMoTH-Up directly addresses the call COMPET-2-2014 by providing an innovative avionics solution for safer and more reliable launch operations for conventional launching systems. The solution developed within MaMMoTH-Up strengthens competitiveness and cost-efficiency having an immediate commercial potential.
Wissenschaftliches Gebiet
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Finanzierungsplan
RIA - Research and Innovation actionKoordinator
51147 Koln
Deutschland