Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenido archivado el 2024-06-18

Antiviral Defense in the Vector Mosquito Aedes aegypti: induction and suppression of RNA silencing pathways

Objetivo

BACKGROUND: Mosquitoes and other blood-feeding arthropods transmit important human and animal viruses (arthropod-borne viruses, arboviruses). With the increasing global threat of arboviruses, it is essential to understand the virus-vector interactions that determine virus transmission. The mosquito antiviral immune response is a key determinant of virus replication and transmission. We recently showed that arboviruses are targeted by a poorly-understood RNA silencing pathway in the major vector mosquito Aedes aegypti: the Piwi-interacting RNA (piRNA) pathway. Our (published and unpublished) observations imply that the piRNA pathway contributes to antiviral defense against different classes of viruses in somatic tissues of mosquitoes. Moreover, we identified a novel class of endogenous gene-derived piRNAs in mosquitoes that may form a new paradigm for piRNA-based regulation of cellular gene expression.

AIM: This proposal has a three-fold aim: i) to delineate the biogenesis and function of the novel classes of virus- and gene-derived piRNAs, ii) to characterize mechanisms by which (arbo)viruses suppress or evade antiviral RNA silencing pathways, and by doing so, iii) to establish mosquitoes as an experimental model to characterize the complex piRNA machinery.

APPROACH: We will use Aedes cell lines that recapitulate all aspects of piRNA biogenesis. This allows us to use a unique, powerful approach of genomic, cell biological, biochemical, and proteomic methodologies to study piRNA biogenesis and function.

IMPORTANCE AND INNOVATION: This is the first study to comprehensively characterize viral and cellular piRNA biogenesis and function in mosquitoes. This proposal provides novel insights into the antiviral response in mosquitoes and may uncover novel regulatory functions of endogenous piRNAs. Moreover, it establishes a platform for functional and biochemical dissection of the complex biogenesis of piRNAs - the most enigmatic class of small silencing RNAs.

Convocatoria de propuestas

ERC-2013-CoG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-CG - ERC Consolidator Grants

Institución de acogida

STICHTING RADBOUD UNIVERSITEIT
Aportación de la UE
€ 2 000 000,00
Dirección
HOUTLAAN 4
6525 XZ Nijmegen
Países Bajos

Ver en el mapa

Región
Oost-Nederland Gelderland Arnhem/Nijmegen
Tipo de actividad
Higher or Secondary Education Establishments
Investigador principal
Ronald Van Rij (Dr.)
Contacto administrativo
Andrea Kroon (Ms.)
Enlaces
Coste total
Sin datos

Beneficiarios (1)