Obiettivo
The challenge of today lies in the accomplishment of sustainable and low-energy buildings, which can combine at the same time the thermal insulation properties with healthy, comfortable, accessible and safe indoor environment. Reduction of the energy demand through the use of insulating materials still remains a challenge for European architects and building designers as well as materials producers. Beside good and consistent thermal and acoustic performance overtime, a good and marketable insulation material should in fact be self-extinguishing, not degradable, unshrinkable or non-settling, safe during handling and installation, low cost and should not pollute the indoor building environment, while having a low embodied energy, proven through LCA assessment. The main aim of the BRIMEE project is therefore to combine the development of better performing insulation materials for improving buildings energy performance and having as final overall objective a significant reduction of buildings operational energy, in combination with the capability not to emit harmful substances and to act as an absorber for indoor pollutants. Our innovation is based on a Nano-Cristalline Cellulose (NCC) based foam, strengthened with Natural derived resin (furan), providing self extinguishing features. An enzimatic approach and protein fusion to the Cellulose basis is exploited to confer to the material additional functionalities from the bulk, such as fragrance release, water repellence or anti-bacteria. Thanks to an advanced processing, the NCC material can be profitably extracted from the waste streams of the pulp and paper industry. Although the BRIMEE product family is applicable for the envelope and interior partitions of both new and existing buildings, most of the impact and the largest market is represented by buildings built before 1975 and requiring retrofitting. This is the initial market to be penetrated in line with EU priorities and recent action plans and directives.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
Programma(i)
Invito a presentare proposte
FP7-2013-NMP-ENV-EeB
Vedi altri progetti per questo bando
Meccanismo di finanziamento
CP-IP - Large-scale integrating projectCoordinatore
16129 Genova
Italia
Mostra sulla mappa
Partecipanti (14)
28050 MADRID
Mostra sulla mappa
95050 Konstantynow Lodzki
Mostra sulla mappa
WD25 9XX Watford
Mostra sulla mappa
12205 Berlin
Mostra sulla mappa
76100 Rehovot
Mostra sulla mappa
1000 Ljubljana
Mostra sulla mappa
14122 Irakleio
Mostra sulla mappa
80686 Munchen
Mostra sulla mappa
91904 Jerusalem
Mostra sulla mappa
00-353 WARSZAWA
Mostra sulla mappa
31030 CARBONERA
Mostra sulla mappa
638 00 Brno
Mostra sulla mappa
030138 Bucuresti
Mostra sulla mappa
00 950 WARSZAWA
Mostra sulla mappa