Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Inhalt archiviert am 2024-05-29

HIGH-PERFORMANCE GLASS-BASED COATINGS

Ziel

The available industrial processes for depositing thick glass coatings (enamelling and glazing) have serious disadvantages. The coatings are low strength, temperature-sensitive materials cannot be coated and also large components or structures outside cannot be coated.
Furthermore, the processes are low technology, vulnerable to competition from low-wage economies and consequently are in decline. The proposal will develop a new integrated process based on modified plasma spraying and combustion flame spraying coupled with infrared crystallization. It is aimed at overcoming the weakness of the available processes and widening application of the glass coatings. The proposed project will develop high-performance Nan structured glass-ceramic coatings and glass-based nanocomposite coatings. These have not been made before. High-strength glasses have high fuse temperatures and cannot be coated onto metal substrate by traditional enamelling. The proposal will employ recent sol-gel techniques to make Nan structured particles, which will be spray-dried to feedstock powder and then plasma (or combustion) sprayed. The rapid thermal cycle of spray-deposition preserves the Nan structure and suppresses crystallization. Near infrared radiation immediately after spraying will be used to control the nucleation and growth of the amorphous phase to produce Nan structured glass-ceramic coatings. For glass-based Nan composite coatings, thenanoparticles will be added to the base glass at the gel stage. Computational modelling will facilitate the understanding of the fundamental processes, enhance control and provide a science-based methodology for equipment design. The new technology will allow high-performance glass coatings to be produced with potential applications in, for example, machine tools, textile machinery, and automotive and chemical industries. The process will also enable temperature-sensitive materials (e.g. concrete and cast iron).

Wissenschaftliches Gebiet

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.

Aufforderung zur Vorschlagseinreichung

FP6-2002-NMP-1
Andere Projekte für diesen Aufruf anzeigen

Koordinator

LONDON SOUTH BANK UNIVERSITY
EU-Beitrag
Keine Daten
Adresse
BOROUGH ROAD, 103
LONDON
Vereinigtes Königreich

Auf der Karte ansehen

Links
Gesamtkosten
Keine Daten

Beteiligte (8)