Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenu archivé le 2024-06-18

Predictive Computational Metallurgy

Objectif

Why is there no “Moore’s Law” for the creation of stronger and more durable metals? Because there is a unique complexity to mechanical properties of metals: the strength, hardening, embrittlement, fracture, and fatigue are controlled by multi-defect interactions (dislocations/solutes/precipitates/grain boundaries). However, such multi-defect interactions are beyond the scope of analytical elasticity theory, and thus require a deeper inquiry at atomistic and quantum scales. And observed macroscopic mechanical behaviour arises from the collective interactions among such defects over large length and time scales. The PI will tackle the fundamental challenge of the multi-defect, multi-scale problem in metal alloys through a combined theory/simulation effort that will push forward the frontiers of computational metallurgy and yield new, quantitative, predictive models of the mechanical performance of metals alloys that will accelerate metal design. Three specific thrusts are proposed to predict the role of solute chemistry on : (i) fundamental dislocation phenomena, and the resulting effects on plastic flow and ductility (Solute/Dislocation/Dislocation interactions); (ii) dislocation transmission/absorption and damage nucleation along boundaries (Solute/Grain-boundary/Dislocation interactions); and (iii) the propagation of cracks under monotonic and fatigue loading (Solute/Crack/Dislocation/Grain-boundary interactions). Small-scale Quantum, Atomistic, and/or Dislocation-level simulations will be designed to probe mechanistic concepts and to validate new predictive theories and new material constitutive models. This approach is now feasible due to new multiscale modeling techniques developed by the PI and his recent quantitative models that resolve long-standing problems in metallurgy. The theories and models emerging from this research will allow for generalization of the mechanisms across metals, and will enable the enhancement and design of new metal alloys.

Appel à propositions

ERC-2013-ADG
Voir d’autres projets de cet appel

Régime de financement

ERC-AG - ERC Advanced Grant

Institution d’accueil

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Contribution de l’UE
€ 2 347 920,00
Adresse
BATIMENT CE 3316 STATION 1
1015 Lausanne
Suisse

Voir sur la carte

Région
Schweiz/Suisse/Svizzera Région lémanique Vaud
Type d’activité
Higher or Secondary Education Establishments
Contact administratif
Caroline Vandevyver (Dr.)
Chercheur principal
William Arthur Curtin (Prof.)
Liens
Coût total
Aucune donnée

Bénéficiaires (1)