Final Report Summary - CONDPOLYBLENDORD (Controlling the Order of Functional Polymers and Their Corresponding Blends.)
Throughout history, the concept of adding small quantities of “additives” has been exploited to manipulate the solid-state structure and properties of materials (e.g. steel). More recently, the topic of organic semiconductors has garnered significant popular and scientific interested due to their potential for improved device performance (e.g. improved color saturation in organic light-emitting diodes) with reduced manufacturing costs (e.g. through solution processing). CONDPOLYBLENDORD utilized the well-known concept of additives to address one of the grand challenges in the organic semiconductors - controlling the physical organization of organic semiconductors. With this project, we wanted to relate molecular order and conformational arrangements to organic conjugate matter with electronic, magnetic and optical phenomena, and aim at developing understanding similar to the polymer mechanics field, where such knowledge led to the development of ultra-high strength polymer fibres, for use in bullet-proof gear as well as superb medical instruments.
The approach advanced by CONDPOLYBLENDORD applies a strategy widely exploited in classical polymer systems to new material systems, i.e. organic semiconductors. This approach involves the addition of a high surface area additives, which increase the volume of nucleation sites within the host material, and, as a result, control the host material’s crystallite size. Thus, due to its simplicity and versatility, our findings have begun to catalyze further studies in organic semiconductors by device engineers (e.g. developing processing protocols) and to physicists (e.g. understanding microstructure/charge transport relationships). Other potential applications within this area include the use of nucleation agents to control the phase morphologies of active layers in organic photovoltaic cells, where a fine distribution of the active components is believed to be beneficial. In principle, nucleation agents control the size of the crystalline domains in such materials, which enable exploitation of these additives for the production of photonics structures, and also more fundamental studies including elucidation of the influence of grain boundaries on charge transport in organic semiconductors.
CONDPOLYBLENDORD has truly underlined the importance of converging research, technology, and innovation to further assist in the transformation of the polymer industry from commodities towards life-changing products and actively integrate them in the EU’s PV sector. I aimed to contribute to the fundamental knowledge of semiconducting polymers and their corresponding blends by controlling the morphology within these systems using nucleating agents – an approach that had not be investigated and utilized in semiconducting polymers and their corresponding blends before the start of CONDPOLYBLENDORD. Controlling the nano-morphology of conducting polymers and their blends is still essential for the further development in the field of organic electronics. Thus CONDPOLYBLENDORD was designed to significantly contribute to the European organic electronic research and industry sector by advancing the understanding of how to control the morphology of polymer-fullerene blends. I also attempted with the project to harness the rich, interdisciplinary expertise in chemistry, engineering and physics, which has permitted me to gain a better understanding of the requirements for nucleation and allowed me to design new materials that, eventually, may lead to the development of new opportunities that make straight- forward, large-area specialty products possible and, thus, will strengthen Europe’s long-standing position in manufacturing.