Objective
"This project aims at the development of multiscale simulation methodology and software for predicting the morphology (spatial distribution and state of aggregation of nanoparticles), thermal (glass temperature), mechanical (viscoelastic storage and loss moduli, plasticity, fracture toughness and compression strength), electrical and optical properties of soft and hard polymer matrix nanocomposites from the atomic-level characteristics of their constituent nanoparticles and macromolecules and from the processing conditions used in their preparation.
The hierarchical simulation methodology and software to be developed will be validated against two main categories of systems: silica-filled natural and synthetic rubbers and carbon nanotube filled thermoset resins. The novel ground-breaking modelling methodology should significantly improve the reliable design and processability of nanocomposites contributing to the EU Grand Challenges for reduction of CO2 emission, energy savings by light-weight high-strength nanocomposites, mobility and improved living environment. The successful outcome of the project will constitute an important advance in the state of the art and will have immediate industrial, economic and environmental impact.
The multiscale simulation methodology of EU-COMPNANOCOMP focuses on soft nanocomposites (thermoplastics) whereas the complementary RU-COMPNANOCOMP focuses on glassy nanocomposites (thermosets)(grey in proposal). RU-COMPNANOCOMP is completed with EU partners for experimental validation of the multiscale modelling codes. Both EU and RU consortia work on the development of algorithms to be integrated in a multiscale modelling software package for further commercialization.
A total of 213.5 man months completed with 26 man months from own resources is proposed with a project duration of 36 months appropriate for achieving the challenging objectives. EU-COMPNANOCOMP has a total cost of 2.3 million € with EC funding of 1.5 million € requested."
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencescomputer and information sciencessoftware
- natural scienceschemical sciencespolymer sciences
- engineering and technologynanotechnologynano-materials
- natural sciencescomputer and information sciencescomputational sciencemultiphysics
- engineering and technologymaterials engineeringnanocomposites
Programme(s)
Call for proposal
FP7-NMP-2011-EU-RUSSIA
See other projects for this call
Funding Scheme
CP-FP - Small or medium-scale focused research projectCoordinator
5600 AX EINDHOVEN
Netherlands