Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenuto archiviato il 2024-06-18

NEW BIOCOATING FOR CORROSION INHIBITION IN METAL SURFACES

Obiettivo

The annual direct cost of corrosion estimated worldwide exceeds €1.32 trillion, which means approximately between 3 to 4% of the Gross Domestic Product (GDP) of industrialized countries. Among the different types of corrosion Microbial Influenced Corrosion (MIC) caused by fouling is estimated to be involved in at least 10% of the corrosion problems of structures reaching to 50% in the case of subterranean pipes. Existing antifouling solutions include biocides and solutions not environmentally friendly. Latest research has begun to focus on greener replacements, but up to now, with low environmental performance and durability ratios. This fact has caused an urgent demand for greener, non-toxic or low-toxicity (green Anti-Fouling agents) and longer lasting antifouling compounds and technologies. The main objective of the project is the development of an innovative biomimetic and eco-efficient environmental technology for inhibiting microbial induced corrosion (MIC) produced by biofouling through the integration of microorganisms in a sol-gel coating for metal surfaces of civil engineering structures in marine and terrestrial environments. The potential economic impact of the technology developed in the project could mean approximately 612 billion € in direct cost.
The general objectives are expected to be achieved through the following WPs:
WP1: Microorganisms and inhibitors to be included in the sol-gel matrix
WP2: Synthesis of a sol-gel enriched matrix for corrosion inhibition
WP3: Environmental aspects of the biomimetic developed coating
WP4: Demonstration
WP5: Dissemination
WP6: Business models and Exploitation
WP7: Project Management

Campo scientifico

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.

Invito a presentare proposte

FP7-ENV-2011-ECO-INNOVATION-TwoStage
Vedi altri progetti per questo bando

Meccanismo di finanziamento

CP - Collaborative project (generic)

Coordinatore

ACCIONA CONSTRUCCION SA
Contributo UE
€ 590 350,00
Indirizzo
CALLE MESENA 80
28033 MADRID
Spagna

Mostra sulla mappa

Regione
Comunidad de Madrid Comunidad de Madrid Madrid
Tipo di attività
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Collegamenti
Costo totale
Nessun dato

Partecipanti (9)