Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Contenuto archiviato il 2024-06-18

Diagnosis, Error Modelling and Correction for Reliable Systems Design

Descrizione del progetto


Design of semiconductor components and electronic based miniaturised systems
DIAMOND develops methodology and integrated environment for diagnosis and correction of errors regarding the design and implementation of digital ICs.

The aim of DIAMOND project is improving the productivity and reliability of semiconductor and electronic system design in Europe by providing a systematic methodology and an integrated environment for the diagnosis and correction of errors. Increasing design costs are the main challenge facing the semiconductor community. Assuring the correctness of the design contributes to the major part of the problem. However, while diagnosis and correction of errors are more time-consuming compared to error detection, they have received far less attention, both in terms of research works and industrial tools introduced. Another, orthogonal threat to the development is the rapidly growing rate of soft-errors in the emerging nanometer technologies. According to roadmaps, soft-errors in sequential logic are becoming a more severe issue than in memories. However, the design community is not ready for this challenge because existing soft-error escape identification methods for sequential logic are inadequate. The DIAMOND project aims at developing a unified, holistic diagnostic model for design and soft errors as well as automated localisation and correction techniques based on the unified model, both pre-silicon and post-silicon. In addition work will be directed to the implementation of a reasoning framework for localisation and correction, encompassing word-level techniques, formal, semi-formal, and dynamic techniques and to the integration of automated correction with the diagnosis methods. DIAMOND reaches beyond the state-of-the-art by proposing an integrated approach to localisation and correction of specification, implementation, and soft errors. In addition, it considers faults on all abstraction levels, from specification through implementation down to the silicon layout. Handling this full chain of levels allows DIAMOND take advantage of hierarchical diagnosis and correction capabilities incorporating a wide range of error sources.

Increasing design costs are the main challenge facing the semiconductor community. Assuring the correctness of the design contributes to the major part of the problem. However, while diagnosis and correction of errors are more time-consuming compared to error detection, they have received far less attention, both, in terms of research works and industrial tools introduced.Another orthogonal threat to the development is the rapidly growing rate of soft-errors in the emerging nanometer technologies. According to roadmaps, soft-errors in sequential logic are becoming a more severe issue than in memories. However, the design community is not ready for this challenge because existing soft-error escape identification methods for sequential logic are inadequate.
The DIAMOND project addresses the above-mentioned challenges. The aim of DIAMOND is improving the productivity and reliability of semiconductor and electronic system design in Europe by providing a systematic methodology and an integrated environment for the diagnosis and correction of errors. DIAMOND will develop:
- A unified, holistic diagnostic model for design and soft errors;- Automated localisation and correction techniques based on the unified model, both pre-silicon and post-silicon;- Implementation of a reasoning framework for localisation and correction, encompassing word-level techniques, formal, semi-formal, and dynamic techniques;- Integration of automated correction with the diagnosis methods.DIAMOND reaches beyond the state-of-the-art by proposing an integrated approach to localisation and correction of specification, implementation, and soft errors. In addition, it considers faults on all abstraction levels, from specification through implementation down to the silicon layout. Handling this full chain of levels allows DIAMOND take advantage of hierarchical diagnosis and correction capabilities incorporating a wide range of error sources.

Invito a presentare proposte

FP7-ICT-2009-4
Vedi altri progetti per questo bando

Meccanismo di finanziamento

CP - Collaborative project (generic)

Coordinatore

TALLINNA TEHNIKAÜLIKOOL
Contributo UE
€ 431 560,00
Indirizzo
EHITAJATE TEE 5
12616 Tallinn
Estonia

Mostra sulla mappa

Regione
Eesti Eesti Põhja-Eesti
Tipo di attività
Higher or Secondary Education Establishments
Contatto amministrativo
Liina Kotkas (Ms.)
Collegamenti
Costo totale
Nessun dato

Partecipanti (7)