Objectif
Membrane bioreactor (MBR) technology is regarded as key element of advanced wastewater reclamation and reuse schemes and can considerably contribute to sustainable water management. MBR technology is used for wastewater treatment and reuse in municipal, agricultural and a variety of industrial sectors in Europe and MENA. The market pull, in the context of this NMP call, is the increasing demand for clean water complying with the strict European and MENA regulations. The European growing MBR market is dominated by two suppliers from Canada and Japan. Although, the European scientific community is strong in R&D, its expertise remains fragmented and lacks organization and communication within Europe. Despite the fact that the technical feasibility of this technology has been demonstrated through a large number of small and large scale applications, membrane fouling is regarded as an important bottleneck for further development. It is the main limitation to faster development of this process, particularly when it leads to flux losses that cleaning cannot restore. The objective of the BioNexGen project is therefore to develop a new class of functional low fouling membranes for membrane bioreactor technology with high and constant water flux (25 l/m2/h) and high rejection of organic pollutants with low molecular weight (down to 300 Da). The consortium consisting of European and MENA partners will develop a novel single step NF MBR operated with low energy consumption due to less aeration needed (0.2 Nm3/m2/h). Small footprint, flexible design, and automated operation make it ideal for localized, decentralized wastewater treatment and recycling in the European and MENA countries. Successful delivery will have a major impact on the competitiveness of the SME partners in the project and the European and MENA MBR market. Furthermore it will significantly contribute to scientific and technological cooperation between European and MENA countries in the provision of safe water.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- engineering and technologyenvironmental engineeringwaste managementwaste treatment processesrecycling
- engineering and technologyenvironmental engineeringwater treatment processeswastewater treatment processes
- engineering and technologyenvironmental biotechnologybioremediationbioreactors
- engineering and technologyenvironmental engineeringnatural resources managementwater management
Programme(s)
Appel à propositions
FP7-NMP-2009-SMALL-3
Voir d’autres projets de cet appel
Régime de financement
CP-FP - Small or medium-scale focused research projectCoordinateur
76133 Karlsruhe
Allemagne