Objectif
Noise pollution is a major environmental problem within the EU. The social costs of traffic noise have been estimated to 0.4% of total GDP. Road traffic is the dominant source, and also rail traffic noise is significant. At the same time, road and rail traffic are expected to steadily increase, and the source strength is not expected to significantly decrease within the near future. To reduce the outdoor traffic noise to a sufficiently low level for a good acoustic environment is a major challenge of high need. Here, we will focus on noise propagation abatement for the outdoor environment. Following the EU Directive on environmental noise, a series of major action have been taken in noise abatement, but the sustainability has rarely been paid attention. The main idea of our project is to optimize the use of green areas, green surfaces and other natural elements in combination with artificial elements in urban and rural environments for reducing the noise impact of road and rail traffic. The project offers a variety of powerful abatement strategies that will make a cost effective improvement by its combination of approaches concerning: ground and road surface treatments; trees, forests and tall vegetation; greening of buildings and other surfaces; and innovative barriers. The noise impact will be assessed in terms of sound levels (including spectra and time patterns) as well as perceived environment (including annoyance, well-being and other health related aspects). The main objectives of the project are: to show by full scale evaluation that the proposed abatement methods work; to deliver noise prediction methods applicable to the proposed abatements, which can also be used in noise mapping software; to deliver assessment methods for the perceived noise environment; to deliver a good practice guide for the end-users; and to show the cost benefit, including the positive effect on urban air quality and CO2 neutrality, of the resulting noise abatement methods.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
Appel à propositions
FP7-SST-2008-RTD-1
Voir d’autres projets de cet appel
Régime de financement
CP-FP - Small or medium-scale focused research projectCoordinateur
412 96 Goteborg
Suède