Obiettivo
Green plants application is being promoted through different European directives, which aim to achieve 5.75% of liquid fuel supply by 2010 and 20% by 2020. Liquid fuels derived from cellulosic biomass offer an important alternative to conventional energy sources to reduce Europe’s dependence on fossil fuels. Trees are attractive dedicated energy crops because they display a wide range of growth habits and can be grown on marginal lands unsuited to other agricultural crops including energy grasses, with reduced input costs and optimised land management. ENERGYPOPLAR is designed to develop domesticated energy poplars having both desirable cell-wall traits and high biomass yield under sustainable low-input conditions to be used as a source of lignocellulosic feedstock for bioethanol. ENERGYPOPLAR will (i) Provide a better understanding of fundamental mechanisms determining optimised yield in Populus (ii) Understand mechanisms that regulate the synthesis of cell wall polysaccharides (iii) Provide a better understanding of lignocellulosic quality and in a particular the genetic and genomic basis of ‘high cellulose’ trees linked to alterations in the quality and quantity of lignin (iv) Develop high thoughput assays for lignocellulosic quality and lignocellulose saccharification potential (v) Establish a platform for rapid genes discovery and testing using systems biology approaches to identify novel transcripts for traits of interest (vi) Develop a delivery pipeline for improved genotypes for ENERGYPOPLAR trees, with traits of interest and begin the process of commercialisation (vii) Establish a tool for environmental sustainability assessments of SRC Populus growing systems (viii) Disseminate the results and transfer technology to the energy industry, land-based sector and to appropriate policy makers
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- engineering and technologyenvironmental engineeringenergy and fuelsliquid fuels
- engineering and technologyenvironmental engineeringnatural resources managementland management
- natural sciencesbiological sciencesbiochemistrybiomoleculescarbohydrates
- agricultural sciencesagriculture, forestry, and fisheriesagriculture
- agricultural sciencesagricultural biotechnologybiomass
Parole chiave
Invito a presentare proposte
FP7-KBBE-2007-1
Vedi altri progetti per questo bando
Meccanismo di finanziamento
CP-FP - Small or medium-scale focused research projectCoordinatore
75007 Paris
Francia