Descrizione del progetto
Un nuovo punto di vista sulle previsioni dei cambiamenti climatici
La progressione del riscaldamento globale pone delle sfide che richiedono soluzioni urgenti e di tipo scientifico. I modelli del sistema Terra (ESM, Earth system model), fondamentali per la previsione dei cambiamenti climatici, presentano incertezze intrinseche nelle loro previsioni. L’obiettivo principale del progetto AI4PEX, finanziato dall’UE, è quello di affrontare queste incertezze migliorando gli ESM. Il progetto affronterà i principali fattori che contribuiscono alle incertezze utilizzando l’apprendimento automatico avanzato e l’IA. Fondendo le osservazioni con queste tecnologie all’avanguardia, AI4PEX cerca di «apprendere» e modellare accuratamente i processi complessi che riducono la nostra fiducia nelle previsioni climatiche. Utilizzando un approccio multidisciplinare, il progetto mira a una svolta nell’accuratezza dei modelli del sistema terrestre, fondamentale per anticipare i futuri fenomeni climatici estremi e il loro impatto sulla società.
Obiettivo
Global warming continues at an alarming rate, presenting unprecedented challenges to society that require urgent, science-led mitigation and adaptation. Earth system models (ESMs) are essential tools for projecting climate change, providing important information to decision makers. However, confidence in predicted climate change is undermined by a number of uncertainties; (i) ESMs disagree on how much the Earth will warm for a given increase in atmospheric carbon dioxide (CO2) (Earth’s equilibrium climate sensitivity); (ii) how much emitted CO2 will stay in the atmosphere to warm the planet (half the CO2 emitted by humans has been absorbed by the land and ocean) and (iii) how much excess heat in the Earth system will enter the ocean interior, delaying surface warming (~90 % of the heat in the Earth system goes into the ocean). Central to these uncertainties are poorly understood, and poorly modelled, Earth system feedbacks, in particular cloud feedbacks, carbon cycle feedbacks and ocean heat uptake. Poor representation of these phenomena degrades the accuracy of ESM projections, with implications for anticipating future climate extremes and societal impacts. We aim to improve the representation of these feedbacks in ESMs, reducing uncertainty in global warming projections. We propose a multidisciplinary approach, focused on “learning” how to accurately describe processes underpinning these feedbacks, through a fusion of observations with advanced machine learning (ML) and artificial intelligence (AI). Such data and approaches, constrained by the laws of physics, will deliver a step change in the accuracy of Earth system models.
AI4PEX will place Europe at the forefront of a revolution in Earth system modelling, leading to increased accuracy of climate change projections and superior support for implementation of the Paris Climate Agreement and the European Green Deal.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- natural sciencesphysical sciencesastronomyplanetary sciencesplanets
- natural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changes
- social scienceseconomics and businesseconomicssustainable economy
- natural sciencescomputer and information sciencesartificial intelligencemachine learning
- natural sciencescomputer and information sciencessoftwaresoftware applicationssimulation software
Parole chiave
Programma(i)
Meccanismo di finanziamento
HORIZON-RIA - HORIZON Research and Innovation ActionsCoordinatore
80539 Munchen
Germania