Descripción del proyecto
Una nueva visión de las predicciones sobre el cambio climático
La progresión del calentamiento global plantea retos que exigen soluciones urgentes y basadas en la ciencia. Los modelos del sistema terrestre (MST), vitales para predecir el cambio climático, poseen incertidumbres inherentes a sus predicciones. El principal objetivo del proyecto AI4PEX, financiado con fondos europeos, es abordar esas incertidumbres mejorando los MST. El equipo del proyecto abordará los factores clave que contribuyen a las incertidumbres mediante el empleo del aprendizaje automático avanzado y la inteligencia artificial. Al fusionar las observaciones con estas tecnologías de vanguardia, AI4PEX pretende «aprender» y modelizar con precisión los complejos procesos que merman nuestra confianza en las predicciones climáticas. Mediante un planteamiento multidisciplinar, el equipo del proyecto aspira a lograr un gran avance en la precisión de los modelos del sistema terrestre, crucial para anticipar futuros fenómenos climáticos extremos y sus repercusiones sociales.
Objetivo
Global warming continues at an alarming rate, presenting unprecedented challenges to society that require urgent, science-led mitigation and adaptation. Earth system models (ESMs) are essential tools for projecting climate change, providing important information to decision makers. However, confidence in predicted climate change is undermined by a number of uncertainties; (i) ESMs disagree on how much the Earth will warm for a given increase in atmospheric carbon dioxide (CO2) (Earth’s equilibrium climate sensitivity); (ii) how much emitted CO2 will stay in the atmosphere to warm the planet (half the CO2 emitted by humans has been absorbed by the land and ocean) and (iii) how much excess heat in the Earth system will enter the ocean interior, delaying surface warming (~90 % of the heat in the Earth system goes into the ocean). Central to these uncertainties are poorly understood, and poorly modelled, Earth system feedbacks, in particular cloud feedbacks, carbon cycle feedbacks and ocean heat uptake. Poor representation of these phenomena degrades the accuracy of ESM projections, with implications for anticipating future climate extremes and societal impacts. We aim to improve the representation of these feedbacks in ESMs, reducing uncertainty in global warming projections. We propose a multidisciplinary approach, focused on “learning” how to accurately describe processes underpinning these feedbacks, through a fusion of observations with advanced machine learning (ML) and artificial intelligence (AI). Such data and approaches, constrained by the laws of physics, will deliver a step change in the accuracy of Earth system models.
AI4PEX will place Europe at the forefront of a revolution in Earth system modelling, leading to increased accuracy of climate change projections and superior support for implementation of the Paris Climate Agreement and the European Green Deal.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- natural sciencesphysical sciencesastronomyplanetary sciencesplanets
- natural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changes
- social scienceseconomics and businesseconomicssustainable economy
- natural sciencescomputer and information sciencesartificial intelligencemachine learning
- natural sciencescomputer and information sciencessoftwaresoftware applicationssimulation software
Palabras clave
Programa(s)
Régimen de financiación
HORIZON-RIA - HORIZON Research and Innovation ActionsCoordinador
80539 Munchen
Alemania