Descrizione del progetto
La ricerca sfida l’opinione diffusa sul modo in cui la luce interagisce con la materia nei materiali biologici
La fluorescenza nella materia organica è stata a lungo associata solo a una classe specifica di sostanze chimiche, ovvero i sistemi coniugati. Alcuni recenti esperimenti suggeriscono che sia possibile osservare una fluorescenza nei mezzi composti da reti dense di legami a idrogeno. Servendosi di avanzate simulazioni al computer, il progetto HyBOP, finanziato dall’UE, si propone di decifrare le proprietà ottiche esotiche delle reti con legami a idrogeno e sfruttarle come prove delle forze mediate dall’acqua. A tal fine, i ricercatori indagheranno sul modo in cui creare reti fluorescenti con legami a idrogeno nei materiali biologici e manipolare elettroni e nuclei nell’acqua. Le reti con legami a idrogeno potrebbero contribuire allo studio di numerosi diversi fenomeni in modo non invasivo, tra cui all’interno di contesti medici.
Obiettivo
Fluorescence takes place throughout the natural world. Most conventional chemical wisdom proposes that in organic entities, fluorescence occurs in conjugated systems, such as in the aromatics. However, in biological settings, the interaction of light with matter occurs in media built up of dense networks of hydrogen bonds. Recent experiments suggest that it is possible to observe fluorescence from these networks too. This could open the possibility of designing hydrogen-bond networks with enhanced fluorescence, offering enormous fundamental and practical potential.
The overarching goal of HyBOP is to decipher, using advanced computer simulations, the exotic optical properties of hydrogen-bond networks and to harness them as probes of water-mediated forces. To achieve this, HyBOP will tackle the following challenges:1) Establish the ground rules for creating fluorescent hydrogen-bond networks in biological materials. 2) Understand how to drive the electrons and nuclei of water networks into regimes where they can fluoresce. 3) Use the optical behaviour of these networks to probe hydrophobic forces in nature.
To uncover the complex chemistry of hydrogen-bond network fluorescence, and guide the discovery of new fluorophores, we will deploy state of the art electronic excited-state molecular dynamics in combination with machine-learning techniques. This will provide HyBOP with ground-breaking knowledge which will lay a theoretical framework to motivate development of new experimental probes of hydrophobicity.
HyBOP seeks to bring hydrogen-bond networks to the forefront of chemistry in their use as optical probes; by laying the theoretical ground-work for designing non-invasive fluorophores in biophysics, opening up a new window into the origins of autofluorescence in medical diagnostics and finally, provoking frontier electron and nuclear spectroscopy, HyBOP will have a spill-over effect and build new synergies across several branches of the physical sciences.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
Parole chiave
Programma(i)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Argomento(i)
Meccanismo di finanziamento
ERC - Support for frontier research (ERC)Istituzione ospitante
75007 Paris
Francia