Descripción del proyecto
Una investigación desafía el conocimiento convencional de cómo la luz interacciona con la materia en los materiales biológicos
Hace mucho tiempo que la fluorescencia en la materia orgánica se relaciona con un solo tipo de sustancias químicas, concretamente los sistemas conjugados. Experimentos recientes sugieren que es posible observar fluorescencia en medios compuestos por redes densas de enlaces de hidrógeno. El objetivo del proyecto HyBOP, financiado con fondos europeos, es descifrar las propiedades ópticas exóticas de las redes de enlaces de hidrógeno y aprovecharlas como sondas de las fuerzas mediadas por el agua. Para ello, los científicos investigarán cómo crear redes de enlaces de hidrógeno fluorescentes en materiales biológicos y cómo manipular los electrones y los núcleos en el agua. Las redes de enlaces de hidrógeno podrían ayudar a estudiar muchos fenómenos distintos de forma no invasiva, incluso en entornos médicos.
Objetivo
Fluorescence takes place throughout the natural world. Most conventional chemical wisdom proposes that in organic entities, fluorescence occurs in conjugated systems, such as in the aromatics. However, in biological settings, the interaction of light with matter occurs in media built up of dense networks of hydrogen bonds. Recent experiments suggest that it is possible to observe fluorescence from these networks too. This could open the possibility of designing hydrogen-bond networks with enhanced fluorescence, offering enormous fundamental and practical potential.
The overarching goal of HyBOP is to decipher, using advanced computer simulations, the exotic optical properties of hydrogen-bond networks and to harness them as probes of water-mediated forces. To achieve this, HyBOP will tackle the following challenges:1) Establish the ground rules for creating fluorescent hydrogen-bond networks in biological materials. 2) Understand how to drive the electrons and nuclei of water networks into regimes where they can fluoresce. 3) Use the optical behaviour of these networks to probe hydrophobic forces in nature.
To uncover the complex chemistry of hydrogen-bond network fluorescence, and guide the discovery of new fluorophores, we will deploy state of the art electronic excited-state molecular dynamics in combination with machine-learning techniques. This will provide HyBOP with ground-breaking knowledge which will lay a theoretical framework to motivate development of new experimental probes of hydrophobicity.
HyBOP seeks to bring hydrogen-bond networks to the forefront of chemistry in their use as optical probes; by laying the theoretical ground-work for designing non-invasive fluorophores in biophysics, opening up a new window into the origins of autofluorescence in medical diagnostics and finally, provoking frontier electron and nuclear spectroscopy, HyBOP will have a spill-over effect and build new synergies across several branches of the physical sciences.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
Palabras clave
Programa(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Régimen de financiación
ERC - Support for frontier research (ERC)Institución de acogida
75007 Paris
Francia