Descripción del proyecto
El deleite de una celestina fortalece el campo de la optoelectrónica superconductora
Los semiconductores, materiales que «semiconducen» la electricidad han revolucionado nuestras vidas con aplicaciones en todo tipo de productos, desde la electrónica de consumo y las celdas fotovoltaicas hasta los láseres. La integración de los semiconductores con los superconductores abre la puerta a posibilidades ilimitadas de funcionalidad de los dispositivos y a nuevas aplicaciones, como la comunicación, la codificación y el procesamiento cuánticos. Sin embargo, ajustar y optimizar la interfaz física real entre los dos tipos de materiales ha sido un reto debido a la falta de control. El equipo del proyecto SuperCONtacts, respaldado por las Acciones Marie Skłodowska-Curie, pretende superar estas limitaciones con una nueva técnica de fabricación que conducirá a la creación de interfaces superconductor-semiconductor atómicamente afiladas.
Objetivo
The emerging field of superconducting optoelectronics has the potential to impact future quantum processing, communication and encryption. Hybrid light-emitting diodes exhibit emission of entangled photons enhanced by the superconducting state, while novel superconductor (Su) based lasers and quantum light sources have been proposed. Despite the amount of research done in semiconductor (Se) p-n physics and superconductivity, the practical integration between these two field of research is poor mainly due to the weak control of high quality Se/Su interfaces.
This project proposes to overcome these limitations with a new fabrication technique, based on the metallic diffusion of metals in Se nanowires (NWs), for the realization of atomically sharp Su/Se interfaces with an epitaxial relationship.
Starting from a material search I will then investigate the Al (Tc~1K) diffusion into n-doped InAs NWs as well as V and Nb (all Tc>5 K) diffusion into InAs, Si, Ge and GAs NWs. The band structures and resulting contact types (Schottky or Ohmic) of the different material systems will be studied numerically and tested at cryogenic temperatures to find the best material combination. Doping of the nanowires will be tuned to demonstrate superconducting correlations in both p- and n-doped NWs, an essential step for the realization of superconducting diodes. Diffusion through in-situ (S)TEM heating experiments will allow me to control the Su/Se/Su junctions up to the ultimate limit of few nanometers. These ultra-short JJs will allow to enhance the superconducting correlations. Ballistic transport will be probed down to ultra-low temperatures (~10 mK). and the quantification of the mean free path and the quality of the interfaces will take place. By embedding these ultra-short JJs in a superconducting quantum interference device I will be able to control the intensity supercurrent as well as achieving ultimate magnetic-sensitivity ready for novel technological applications.
Ámbito científico
- natural sciencesphysical scienceselectromagnetism and electronicsoptoelectronics
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencesphysical sciencesopticslaser physics
- natural sciencesphysical scienceselectromagnetism and electronicssuperconductivity
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Palabras clave
Programa(s)
Régimen de financiación
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinador
00185 Roma
Italia