Opis projektu
Doskonałe połączenie przyczyni się do rozwoju optoelektroniki opartej na nadprzewodnikach
Półprzewodniki, czyli materiały, które częściowo przewodzą energię elektryczną, zrewolucjonizowały nasze życie. Znalazły one zastosowania w niemal każdej dziedzinie, od elektroniki konsumenckiej i ogniw słonecznych po lasery. Połączenie półprzewodników z nadprzewodnikami otwiera drogę do niezliczonych możliwości w zakresie funkcjonalności urządzeń, a nawet nowych zastosowań, w tym przetwarzania kwantowego, komunikacji kwantowej i szyfrowania kwantowego. Jednak dostosowanie i optymalizacja samego fizycznego interfejsu pomiędzy tymi dwoma typami materiałów jest trudnym wyzwaniem z uwagi na brak możliwości kontroli. Przy wsparciu programu Działania „Maria Skłodowska-Curie” twórcy projektu SuperCONtacts zamierzają pokonać te ograniczenia, stosując nową technikę produkcji, która doprowadzi do uzyskania interfejsów nadprzewodnik-półprzewodnik o grubości zaledwie jednego atomu.
Cel
The emerging field of superconducting optoelectronics has the potential to impact future quantum processing, communication and encryption. Hybrid light-emitting diodes exhibit emission of entangled photons enhanced by the superconducting state, while novel superconductor (Su) based lasers and quantum light sources have been proposed. Despite the amount of research done in semiconductor (Se) p-n physics and superconductivity, the practical integration between these two field of research is poor mainly due to the weak control of high quality Se/Su interfaces.
This project proposes to overcome these limitations with a new fabrication technique, based on the metallic diffusion of metals in Se nanowires (NWs), for the realization of atomically sharp Su/Se interfaces with an epitaxial relationship.
Starting from a material search I will then investigate the Al (Tc~1K) diffusion into n-doped InAs NWs as well as V and Nb (all Tc>5 K) diffusion into InAs, Si, Ge and GAs NWs. The band structures and resulting contact types (Schottky or Ohmic) of the different material systems will be studied numerically and tested at cryogenic temperatures to find the best material combination. Doping of the nanowires will be tuned to demonstrate superconducting correlations in both p- and n-doped NWs, an essential step for the realization of superconducting diodes. Diffusion through in-situ (S)TEM heating experiments will allow me to control the Su/Se/Su junctions up to the ultimate limit of few nanometers. These ultra-short JJs will allow to enhance the superconducting correlations. Ballistic transport will be probed down to ultra-low temperatures (~10 mK). and the quantification of the mean free path and the quality of the interfaces will take place. By embedding these ultra-short JJs in a superconducting quantum interference device I will be able to control the intensity supercurrent as well as achieving ultimate magnetic-sensitivity ready for novel technological applications.
Dziedzina nauki
- natural sciencesphysical scienceselectromagnetism and electronicsoptoelectronics
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencesphysical sciencesopticslaser physics
- natural sciencesphysical scienceselectromagnetism and electronicssuperconductivity
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Słowa kluczowe
Program(-y)
Temat(-y)
System finansowania
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Koordynator
00185 Roma
Włochy