Deliverables
The deliverable is dedicated to description of the final requirements for the control layer based on inputs from D24 D41 D61 and D71 Based on the initial test results the final report will present only the updates if any of the initial requirements defined in D41
Perception and instrumentation Layer requirements and specifications (first iteration)The deliverable is dedicated to description of the initial requirements for the perception andinstrumentation layer which are partially also based on inputs from D21 and D22 while working inparallel and considering D71 and D72 This report will summarize the perception and instrumentationlayer requirements specific for the relevant BBs pilots demonstrators and usecases
Integral (system level) requirements for valuable twinning methods (first iteration)The deliverable D51 will provide requirements and specifications on digital twins and their supporting technologies It will rely on inputs from D21 and D22 The requirements from pilots demonstrators and use cases will be gathered and analysed there from the perspective of BB6 BB8 and BB9 which will be prepared in WP5
Perception and instrumentation Layer requirements and specifications (final iteration)The deliverable is dedicated to description of the final requirements for the perception and instrumentation layer Based on the initial test results the final report will present only the updates if any of the initial requirements defined in D31
General specification and design of IMOCO4.E reference frameworkBased on D23 the final requirements deliverables D32 D42 D52 and the IMOCO4E methodology outlined in D61 this deliverable presents a reference architecture of the IMOCO4E framework at an abstract level This will be the basic but extensible open and modular framework to be realised demonstrated and validated in the IMOCO4E project
State-of-the-art methods in Digital Twinning for motion-driven high-tech applicationsThis deliverable presents a market scan also among consortium partners and literature survey on the state of the art in digital twinning solutions and the application of AI Digital twinning and AI will be considered at several levels ranging from modulelevel to productionlinelevel The report will also describe emerging technologies in this field and identify development directions for IMOCO4E
Requirements for advanced motion control (first iteration)The deliverable is dedicated to description of the initial requirements for the control layer Layer 2 which are partially also based on inputs from D21 and D22 while working in parallel and considering D71 and D72 This report will summarize the control layer requirements specific for the relevant BBs pilots demonstrators and usecases
Integral (system level) requirements for valuable twinning methods (second iteration)This deliverable will contain an extension of requirements and specifications that were prepared in D 51 Only needed revisions of the existing ones and potentially additional ones will be placed there as they can be revealed in the early stage of work in Tasks 52 to 57
Overall requirements on IMOCO4.E reference frameworkThis deliverable describes the requirements on the IMOCO4E reference framework based on inputs from D21 D22 D32 D42 and D51 The deliverable provides requirements on hardware and software building blocks and the instrumentation layer but also on digital twinning the application of AI and ultimately the interfacing between all the IMOCO4E framework components
Needs for future smart production in Europe from the mechatronics and robotic point of viewBased on inputs from D21 knowledge among consortium partners and market knowledge this deliverable identifies the solutions required to expedite the introduction of smart production in Europe eg by addressing existing bottlenecks The report will provide the key technologies that IMOCO4E should focus on to benefit a competitive European manufacturing ecosystem
A website of IMOCO4E project will be established to inform about IMOCO4E interests progress technicalresults It will include all public reports information about IMOCO4E consortium It will also serve as anexternal communication platform for the consortium partners
Publications
Author(s):
Dario Guidotti, Riccardo Masiero, Laura Pandolfo, Luca Pulina
Published in:
2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), Issue 27, 2023, Page(s) 1-4
Publisher:
IEEE
DOI:
10.1109/etfa54631.2023.10275396
Author(s):
Mihail Grovu, Calin Husar, Maria Raluca Raia, Davide Colombo, Alberto Speroni, Daniela Sasu
Published in:
2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), Issue 3, 2023, Page(s) 1-5
Publisher:
IEEE
DOI:
10.1109/etfa54631.2023.10275378
Author(s):
Antonio Rosales, Tapio Heikkilä, Markku Suomalainen
Published in:
2024 IEEE 19th Conference on Industrial Electronics and Applications (ICIEA), Issue 5, 2024, Page(s) 1-6
Publisher:
IEEE
DOI:
10.1109/iciea61579.2024.10665161
Author(s):
van Meer, Max, González, Rodrigo A., Witvoet, Gert, Oomen, Tom
Published in:
2023
Publisher:
IEEE
Author(s):
van Haren, Max; Blanken, Lennart; Oomen, Tom
Published in:
2022
Publisher:
IEEE 61st Conference on Decision and Control 2022 (CDC)
DOI:
10.5281/zenodo.6982575
Author(s):
Max van Meer; Maurice Poot; Jim Portegies; Tom Oomen
Published in:
2022
Publisher:
IFAC Modeling, Estimation, and Control Conference (MECC 2022)
DOI:
10.5281/zenodo.7291337
Author(s):
Filippo Muzzini, Nicola Capodieci , Roberto Cavicchioli, Benjamin Rouxel
Published in:
2023
Publisher:
Association for Computing Machinery
DOI:
10.1145/3558481.3591310
Author(s):
Alessio Masola, Nicola Capodieci, Benjamin Rouxel, Giorgia Franchini, Roberto Cavicchioli
Published in:
2023
Publisher:
IEEE
DOI:
10.1109/rtcsa58653.2023.00026
Author(s):
Dario Guidotti, Laura Pandolfo, Luca Pulina
Published in:
2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), Issue 325, 2024, Page(s) 1-4
Publisher:
IEEE
DOI:
10.1109/etfa54631.2023.10275345
Author(s):
Alessio Masola, Nicola Capodieci, Roberto Cavicchioli, Ignacio Sanudo Olmedo, Benjamin Rouxel
Published in:
2023
Publisher:
Springer Cham
DOI:
10.1007/978-3-031-43943-8
Author(s):
Martin Goubej, Jakub Tvrz, Břetislav Kubeš
Published in:
2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), Issue 14, 2023, Page(s) 1-8
Publisher:
IEEE
DOI:
10.1109/etfa54631.2023.10275382
Author(s):
Sebastian Flores; Jana Jost
Published in:
2022
Publisher:
IEEE
DOI:
10.1109/isie51582.2022.9831503
Author(s):
Max van Haren; Maurice Poot; Dragan Kostić; Robin van Es; Jim Portegies; Tom Oomen
Published in:
2022
Publisher:
IEEE
DOI:
10.1109/amc51637.2022.9729327
Author(s):
Vibhor Jain, Sajid Mohamed, Dip Goswami, Sander Stuijk
Published in:
2023 26th Euromicro Conference on Digital System Design (DSD), Issue abs/2103.13339, 2024, Page(s) 742-747
Publisher:
IEEE
DOI:
10.1109/dsd60849.2023.00106
Author(s):
Van Meer, Max; Deniz, Emre; Witvoet, Gert; Oomen, Tom
Published in:
Issue 1, 2023
Publisher:
IFAC
DOI:
10.48550/arxiv.2304.03136
Author(s):
Diego Gonzalez; Mikel Armendia
Published in:
2022
Publisher:
IEEE
DOI:
10.1109/ETFA52439.2022.9921666
Author(s):
Max van Meer; Gert Witvoet; Tom Oomen
Published in:
2022
Publisher:
IFAC Modeling, Estimation and Control Conference
DOI:
10.5281/zenodo.7291453
Author(s):
Max van Haren, Lennart Blanken and Tom Oomen
Published in:
Max van Haren, Lennart Blanken and Tom Oomen, 2023
Publisher:
IFAC
Author(s):
Sebastian Flores; Jana Jost
Published in:
2022
Publisher:
IEEE
DOI:
10.1109/isie51582.2022.9831515
Author(s):
Dario Guidotti, Laura Pandolfo, Luca Pulina
Published in:
2023 IEEE 19th International Conference on e-Science (e-Science), Issue 27, 2023, Page(s) 1-2
Publisher:
IEEE
DOI:
10.1109/e-science58273.2023.10254890
Author(s):
Max Van Meer, Gert Witvoet, Tom Oomen
Published in:
2024 European Control Conference (ECC), Issue 31, 2024, Page(s) 2448-2453
Publisher:
IEEE
DOI:
10.23919/ecc64448.2024.10590899
Author(s):
van Haren, Max; Poot, Maurice; Portegies, Jim; Oomen, Tom
Published in:
2022
Publisher:
2022 IEEE American Control Conference (ACC)
DOI:
10.5281/zenodo.6351295
Author(s):
Donato Ferraro, Luca Palazzi, Federico Gavioli, Michele Guzzinati, Andrea Bernardi, Benjamin Rouxel, Paolo Burgio, Marco Solieri
Published in:
Real-Time Systems, 2023, ISSN 0922-6443
Publisher:
Kluwer Academic Publishers
DOI:
10.1007/s11241-023-09404-2
Author(s):
Max van Haren, Leonid Mirkin, Lennart Blanken and Tom Oomen
Published in:
IEEE Control Systems Letters, 2023, ISSN 2475-1456
Publisher:
IEEE
Author(s):
Dario Guidotti, Laura Pandolfo and Luca Pulina
Published in:
Information, 2023, 2023, ISSN 2078-2489
Publisher:
Multidisciplinary Digital Publishing Institute (MDPI)
DOI:
10.3390/info14070397
Searching for OpenAIRE data...
There was an error trying to search data from OpenAIRE
No results available