Description du projet
Optimiser la conception des pièces de cellule d’aéronef de nouvelle génération
L’objectif du projet DOMMINIO, financé par l’UE, est de développer une méthodologie innovante basée sur les données pour la conception, la fabrication et la certification de pièces de cellule d’aéronef multifonctionnelles et intelligentes. Le projet utilisera un système de fabrication rentable, flexible et en plusieurs étapes qui combinera la pose automatisée de ruban et le placement automatisé de fibres pour produire des stratifiés composites de haute qualité et des éléments de renforcement imprimés en 3D. Des outils de simulation avancés, une surveillance en ligne des processus et de la qualité et des systèmes de surveillance de la santé structurelle aideront à optimiser la conception des pièces de la cellule. Les systèmes de fabrication en plusieurs étapes et le pipeline numérique seront testés et validés en laboratoire dans deux parties représentatives de la cellule: un panneau de porte d’accès multifonctionnel et un prototype d’aile de pointe.
Objectif
DOMMINIO aims at developing an innovative data-driven methodology to design, manufacture, maintain and pre-certify multifunctional and intelligent airframe parts (composed of high-quality in-situ consolidated composite laminates and high-performance 3D-printed reinforcement elements) through a cost-effective, flexible and multi-stage manufacturing system based on the combination of robotized ATL and FFF technologies, supported by advanced simulation tools, on-line process & quality monitoring, SHM systems-enabled by embedded novel CNT-based fibre sensors and data analytics.
Innovative multifunctional thermoplastic filaments will be employed to incorporate novel continuous CNT fibre-based piezoresistive strain sensors in the laminate, to enable reversible joining (using magnetic NPs) and increase the structural integrity (using continuous CF) of the 3D-printed reinforcements. Flexible automation of ATL and FFF manufacturing processes will be enabled by the development of new laser-scanning and smart nozzle systems, the simulation of ATL plies consolidation and interlaminar delamination in FFF and the development of novel air-coupled ultrasound quality monitoring systems. Besides, advanced modelling will support the selection of right process window parameters and the optimal production planning strategy, ensuring the quality of the final component. In addition, physics- and data-driven models (Digital Twin) will provide real-time data-driven fault detection capabilities supporting the implementation of new methodologies for SHM&M of multifunctional airframe parts.
The DOMMINIO multi-stage manufacturing systems and digital pipeline will be tested and validated at lab-scale in two representative airframe parts (a multifunctional access door panel and a leading-edge wing prototype), enabling the realization of the DOMMINIO solutions in a laboratory environment, in order to assess novel MDO and MRO methodologies, their life analysis and virtual certification potential.
Champ scientifique
- engineering and technologymechanical engineeringmanufacturing engineering
- engineering and technologycivil engineeringstructural engineeringstructural health monitoring
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- social scienceseconomics and businesseconomicsproduction economics
- natural sciencescomputer and information sciencessoftwaresoftware applicationssimulation software
Mots‑clés
Programme(s)
Régime de financement
RIA - Research and Innovation actionCoordinateur
36410 Porrino
Espagne