Descripción del proyecto
Diseño optimizado de piezas de fuselaje de nueva generación
El objetivo del proyecto financiado con fondos europeos DOMMINIO es desarrollar una metodología innovadora basada en datos para diseñar, fabricar y certificar piezas de fuselaje inteligentes y multifuncionales. El proyecto empleará un sistema de fabricación rentable, flexible y escalonado que combinará la colocación automatizada de cinta y fibra para producir laminados compuestos de alta calidad y elementos de refuerzo impresos en 3D. Las herramientas de simulación avanzadas, la vigilancia en línea de la calidad y los sistemas de vigilancia del estado de la estructura ayudarán a optimizar el diseño de las piezas del fuselaje. Los sistemas de fabricación escalonados y el canal digital se probarán y validarán en el laboratorio en dos piezas representativas del fuselaje: un panel de puerta de acceso multifuncional y un prototipo de ala de vanguardia.
Objetivo
DOMMINIO aims at developing an innovative data-driven methodology to design, manufacture, maintain and pre-certify multifunctional and intelligent airframe parts (composed of high-quality in-situ consolidated composite laminates and high-performance 3D-printed reinforcement elements) through a cost-effective, flexible and multi-stage manufacturing system based on the combination of robotized ATL and FFF technologies, supported by advanced simulation tools, on-line process & quality monitoring, SHM systems-enabled by embedded novel CNT-based fibre sensors and data analytics.
Innovative multifunctional thermoplastic filaments will be employed to incorporate novel continuous CNT fibre-based piezoresistive strain sensors in the laminate, to enable reversible joining (using magnetic NPs) and increase the structural integrity (using continuous CF) of the 3D-printed reinforcements. Flexible automation of ATL and FFF manufacturing processes will be enabled by the development of new laser-scanning and smart nozzle systems, the simulation of ATL plies consolidation and interlaminar delamination in FFF and the development of novel air-coupled ultrasound quality monitoring systems. Besides, advanced modelling will support the selection of right process window parameters and the optimal production planning strategy, ensuring the quality of the final component. In addition, physics- and data-driven models (Digital Twin) will provide real-time data-driven fault detection capabilities supporting the implementation of new methodologies for SHM&M of multifunctional airframe parts.
The DOMMINIO multi-stage manufacturing systems and digital pipeline will be tested and validated at lab-scale in two representative airframe parts (a multifunctional access door panel and a leading-edge wing prototype), enabling the realization of the DOMMINIO solutions in a laboratory environment, in order to assess novel MDO and MRO methodologies, their life analysis and virtual certification potential.
Ámbito científico
- engineering and technologymechanical engineeringmanufacturing engineering
- engineering and technologycivil engineeringstructural engineeringstructural health monitoring
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- social scienceseconomics and businesseconomicsproduction economics
- natural sciencescomputer and information sciencessoftwaresoftware applicationssimulation software
Palabras clave
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-MG-2020-SingleStage-INEA
Régimen de financiación
RIA - Research and Innovation actionCoordinador
36410 Porrino
España