Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

PHev towards zerO EmissioNs & ultimate ICE efficiency

Project description

A hybrid solution for sustainable usage of internal combustion engines

Environmentally friendly mobility is a primary strategic goal in the EU that could become more easily feasible through innovative technologies, electrified solutions and alternative fuel use. The EU-funded PHOENICE project will develop a C SUV-class plug-in hybrid vehicle demonstrator whose fuel consumption and pollutant emissions will be jointly minimised for real-world driving conditions. PHOENICE aims at achieving a technology readiness level 7 focusing on cost, industrialisation, and the opportunity for various vehicle classes to maximise the economic and environmental impacts.

Objective

PHOENICE aims at developing a C SUV-class plug-in hybrid (P1/P4) vehicle demonstrator whose fuel consumption and pollutant emissions will be jointly minimized for real world driving conditions. This development will require the optimisation of a highly efficient gasoline engine, relying on a dual dilution combustion approach with excess air and EGR, synergizing an innovative in-cylinder charge motion with high pressure injection, novel ignition technologies, and an electrified turbocharger particularly relevant for hybrid architectures. The potential of alternative fuels produced by P2X processes will also be considered. To achieve the targeted near-zero emissions in transient conditions specific to PHEV in real driving conditions, the demonstrator vehicle will be equipped with a complete and dedicated after-treatment system including an electrically heated catalyst, a SCR and a GPF for abating NOx, particle number down to 10 nm, and non-regulated gaseous emissions.
The vehicle overall efficiency will be increased with an exhaust waste heat recovery system for generating an additional electric power contribution for cabin heating or cooling, or for reducing the switch-on time of the internal combustion engine in cold conditions, thereby limiting the engine-out pollutant emissions such as particles.
Virtual methods will be employed to reduce the calibration time of all the vehicle sub-systems. The vehicle control will use all the flexibility of the hybrid architecture and sub-systems to lower in real time the driving emissions and fuel consumption.
Technologies developed in PHOENICE will achieve a TRL 7 paying a specific attention to cost, industrialization, and to the use opportunity for various vehicle classes so as to maximize the economic and environmental impacts. This project will support the European automobile industry in the medium term and speed up the transition towards a more environmentally friendly mobility in terms of air quality and GHG emissions.

Call for proposal

H2020-LC-GV-2018-2019-2020

See other projects for this call

Sub call

H2020-LC-GV-2020

Coordinator

IFP Energies nouvelles
Net EU contribution
€ 1 681 143,75
Address
AVENUE DE BOIS PREAU 1 & 4
92500 Rueil Malmaison
France

See on map

Region
Ile-de-France Ile-de-France Hauts-de-Seine
Activity type
Research Organisations
Links
Total cost
€ 1 681 143,75

Participants (8)