Descrizione del progetto
Una risposta integrata contro la Covid-19
Come per ogni pandemia, le misure di risposta e contenimento contro la Covid-19 devono riferirsi a una combinazione di informazioni cliniche, epidemiologiche e immunologiche. Il progetto CORESMA, finanziato dall’UE, sta lavorando a un sistema di sorveglianza basato su un modello di salute mobile per ottenere dati clinici in tempo reale e migliorare la valutazione dei rischi nei paesi che hanno maggiori probabilità di essere colpiti gravemente dalla Covid-19. Inoltre, i ricercatori approfondiranno il ruolo dell’immunità preesistente, di tipo incrociato o parziale, contro la Covid-19 nell’influenzare la suscettibilità alla malattia. Grazie all’impiego di una modellizzazione completa e dell’intelligenza artificiale, il team individuerà i predittori in grado di anticipare gli esiti di particolare gravità, le dinamiche di trasmissione e l’efficacia degli interventi. I risultati non contribuiranno solamente a contrastare la pandemia, ma forniranno inoltre una strategia sostenibile per il futuro.
Obiettivo
Among the biggest challenges in the COVID-19 outbreak are the lack of triangulation of clinical, epidemiologic and immunological information for evidence- based response strategies.
Our overriding ambition is to overcome this deficit through field studies and implementation research in specific populations early enough to already serve in the response to the current outbreak. Four technical work packages (WP) address the four main objectives:
To provide real-time clinical data to improve risk assessment and response, deploying an established mHealth Surveillance Outbreak Response Management and Analysis System (SORMAS) in Nepal, Ivory Coast, Ghana and Nigeria; countries likely to be affected more intensively than the EU.(WP I)
To implement differential serolomics (multiplex serology) for population serum samples from Germany and Nepal for investigating pre-existing cross or partial immunity against COVID-19 and impact on susceptibility.(WP II)
To apply comprehensive modeling, sampling and artificial intelligence on data from the first two work packages in order to assess predictors for severe outcome, transmission dynamics and intervention effectiveness.(WP III)
To measure and improve quality of epidemic containment measures through implementation research in countries particularly vulnerable to the COVID-19 epidemic, in order to tailor effective and efficient control measures to health systems realities in Nepal and Ivory Coast, and to reduce the intensity of importation into the EU. (WP IV)
We combine a) an accelerated ad-hoc outbreak response to address the urgency and b) a sustainable strategy to serve beyond the current public health threat from COVID-19. Software maturity, established networks, pre-approval investments and interdisciplinary expertise among partners - including first hand from China - shall generate first findings within weeks, such as validated criteria for high-risk groups, effectiveness of contact tracing, set-up serolomics platform.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- natural sciencescomputer and information sciencesartificial intelligence
- medical and health scienceshealth scienceshealth care serviceseHealth
- natural sciencescomputer and information sciencessoftware
- medical and health scienceshealth sciencespublic healthepidemiologyepidemics prevention
- medical and health scienceshealth sciencesinfectious diseasesRNA virusescoronaviruses
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
RIA - Research and Innovation actionCoordinatore
38124 Braunschweig
Germania