Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-05-24

Superconducting Qubits : Quantum Computing with Josephson Junctions

Article Category

Article available in the following languages:

Superconducting qubits: quantum computing gets connected

Quantum computers process complex equations to help unravel mysteries of our universe, our climate, and even genetic analysis. Understanding the relationship between quantum bits (qubit) is essential to fully exploit the awesome potential of quantum computing.

Conventional computers process information with a bit that represents a 0 or a 1. Qubits, on the other hand, have the unique ability of representing a 0, 1, or both simultaneously. This quirk means qubits can store and process data at the same time. Quantum computers are therefore able solve parallel tasks using less time and memory than conventional computers. Understanding the relationship between qubits led researchers at the EU-funded SQUID project to create a detector that measures the spectroscopy and relaxation time of a flux qubit. A flux qubit is a micrometre-sized loop of superconducting metal interrupted by a number of Josephson junctions - i.e. two superconductors separated by a non-superconducting barrier. The detection is based on a Josephson inductance of a DC- superconducting quantum interference device - a so-called DC-SQUID. The scientists obtained a relaxation time of about 80 microseconds, a superior result under the circumstances. Normally, measuring flux qubits under these conditions would damage the underlying structure. But researchers at SQUID were able to implement a non-destructive method for the readout of a persistent current flux qubit. The detector will enable future researchers to better understand the relation between quantum measurements and decoherence - the lifetime of a qubit. Quantum physics applied to computing will disclose properties and possibilities never before encountered through conventional computing. The scientists at SQUID have taken us one step further.

Discover other articles in the same domain of application