Working with discrete and continuous systems, being exposed to control, verification, scheduling and other domains, one cannot but observe that many problems treated under different names within different disciplines, have more resemblance if we look at them through an appropriate abstraction that filters their domain-specific details.
Among these problems and techniques we mention the algorithmic approach to discrete systems verification by forward or backward fixpoint computation, the derived reachability algorithms for continuous and hybrid systems, bounded model checking (using satisfiability solvers to verify correctness for a bounded horizon), computational techniques for optimal control such as dynamic programming and model-predictive control, simulation, search methods in AI and Markov decision processes.
Much of our effort during project was concerned with building a general unifying game-theoretic scheme, for which various system design and validation problems are concrete instances, most notably the problem of scheduling under uncertainty.