The objectives of this work were to assess:
Thermally induced hydraulic and mechanical stress phenomena in the rock mass, such as the evolution of pore pressure, compressive stress, and shear stress. Emphasis will be on stress-permeability relationships (normal and shear stresses/shear displacements) to extend capabilities of the MHERLIN code.
The modelling work involved:
Implementing heat balance, thermal coupling with solid and fluid phases, code verification, 2D predictive modelling of pore water and stress evolution in the rock mass during saturation, heating and cooling phases, 2D scoping calculations and sensitivity studies in the rock mass adjacent to a heat source, anisotropy of material properties (mechanical behaviour, hydraulic and thermal conductivity) on the evolution of pore pressure and stress, interpretation of selected data in 2D/3D (distribution of temperature, pore pressure, water saturation, and stress in the rock mass), analysis of parameter uncertainty, determination of domains of critical stress.