Descrizione del progetto
Un nuovo approccio alle porte logiche superconduttrici potrebbe inaugurare una nuova era del supercalcolo
Le calcolatrici hanno rappresentato un grande miglioramento rispetto alle operazioni con carta e penna, ma sono i computer ad aver davvero rivoluzionato la nostra capacità di effettuare calcoli, incrementandone in modo esponenziale la quantità realizzabile in un piccolo intervallo di tempo. I supercomputer che fanno affidamento su porte logiche quantistiche superconduttrici hanno ampliato tali possibilità. Esse risultano sempre più preziose per numerosi campi, ma devono affrontare sfide in termini di miglioramento delle prestazioni con simultanea riduzione del consumo energetico. Il progetto SuperGate, finanziato dall’UE, svilupperà un nuovo approccio alla logica superconduttrice che consentirà di offrire prestazioni equiparabili o migliori riducendo al contempo al minimo i problemi attuali, dando inizio alla prossima evoluzione dei supercomputer.
Obiettivo
Supercomputers are playing an increasingly important role for our society by performing calculations with a variety of implications ranging from weather forecasting to genetic material sequencing to testing of drugs for new diseases. Enhancing the performance of modern supercomputers, whilst minimising their energy losses, represent two contrasting but major needs that the information technology industry will have to address in the future.
The best solution proposed to date to reduce the energy costs of supercomputers without affecting their performance is based on hybrid computing architectures, where a semiconductor part based on complementary metal-oxide semiconductor (CMOS) technology and used for memory operations is combined at low temperatures with logic circuitry offering minimal energy losses thanks to the usage of superconductor (S) materials. Existing superconducting logics, which relies on rapid single flux quantum (RSFQ) technology, however, it is difficult to interface with CMOS and to scale up and it is sensitive to magnetic perturbations – which are the main reasons why hybrid platforms have not replaced CMOS systems despite their advantages.
Starting from our recent discovery that the logic state in some S devices can be controlled via the field effect (FE), in this project we propose to develop a new technology for superconducting logics that can offer performance at least comparable to that of RSFQ logics whilst overcoming all its drawbacks. We will adopt a systematic approach aiming at (i) understanding of the FE in a S, (ii) determining the S materials and device geometry with optimised performance, (iii) testing the dynamic response of optimised devices, (iv) developing logic circuits based on such devices and (v) testing a logic circuit in conjunction with a CMOS electro-optical modulator. We will also establish technology transfer and pave the way for the commercialisation of our technology, which can revolutionise the world of supercomputer.
Campo scientifico
Not validated
Not validated
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencesmathematicspure mathematicsgeometry
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwaresupercomputers
- natural sciencesphysical scienceselectromagnetism and electronicssuperconductivity
Parole chiave
Programma(i)
Invito a presentare proposte
Vedi altri progetti per questo bandoBando secondario
H2020-FETOPEN-2018-2019-2020-01
Meccanismo di finanziamento
RIA - Research and Innovation actionCoordinatore
78464 Konstanz
Germania