Project description
A closer look at how to resuscitate the human cadaveric eye
Many new drugs and regenerative therapies have been developed in the last decades. But not all translational research is successful. Preclinical research still lacks sufficient models of human organs. The EU-funded ECaBox project will develop a pioneering platform to challenge existing paradigms of testing the efficacy and safety of regenerative therapies ex vivo. The technology intends to resuscitate the human cadaveric eye and guarantee retina function and structure ex vivo for an extended time period. The project will avoid ethical restrictions of human experimentation and serve as a point of contact for therapies in other organs preserved ex vivo. ECaBox will also explore the potential of this innovative technology for tackling retina degeneration causing blindness.
Objective
In the last decade, basic and translational research dramatically expanded the development of new drug and regenerative therapies. Nevertheless, numerous potential therapies end up in the “valley of death” due to high attrition rates of preclinical development. More cost-effective preclinical research is needed to support radically new therapeutic interventions (e.g. regenerative medicine). Yet, preclinical research still lacks adequate models of human organs and even though human organoids approaches are a major step forward in mimicking physiological conditions, they fail to reflect the overall tissue physiology and complexity. To address this demand, we aim to develop a revolutionary platform, the ECaBox (Eyes in a Care Box) to resuscitate the human cadaveric eye while ensuring eye function and structure ex vivo for an unmatched time-period. This new technology will challenge current paradigms of testing the efficacy and safety of regenerative therapies ex vivo. We will therefore, explore the potential of this forefront technology by testing a regenerative therapy approach for retina degeneration. Currently, human eyes can be kept at 4ºC for 2 days before going massive and irreversible cell and tissue damage. Human dissected retinae from cadaveric eyes can be preserved for maximum 1 week and non-vascularised human eye organoids fail to recapitulate the vascular and tissue systems. Hence, ECaBox will be a disruptive technology with a tremendous impact allowing to: 1) resuscitate human eyes to test human eye therapies ex vivo, 2) bypass major ethical restrictions of human experimentation, 3) serve as a proof of concept to develop therapies also in other organs preserved ex vivo and 4) transform the existing organ transplantation field. This is a highly interdisciplinary project that integrates expertise in biology, biotechnology, modelling, engineering and physics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Programme(s)
Funding Scheme
RIA - Research and Innovation actionCoordinator
08003 Barcelona
Spain