Descrizione del progetto
Spingere il potere dell’apprendimento profondo nell’Internet delle cose
Mentre l’Internet delle cose (IoT) continua a prendere forma, promettendo un’automazione e uno scambio di dati su larga scala, una delle maggiori sfide è quella di agire sui dati generati. La quantità di dati raccolti è enorme, la potenza di calcolo necessaria per l’elaborazione è elevata e gli algoritmi sono complessi. Il progetto VEDLIoT, finanziato dall’UE, sviluppa una piattaforma IoT che utilizza algoritmi di apprendimento profondo distribuiti in tutto il continuum dell’IoT. Si prevede che la nuova piattaforma proposta, con un’architettura IoT innovativa, apporterà vantaggi significativi a un gran numero di applicazioni, tra cui i robot industriali, le auto a guida autonoma e le case intelligenti. Il progetto offre un Bando aperto a metà progetto, incorporando nel progetto ulteriori casi d’uso industriali legati a VEDLIoT e aumentando la maturità commerciale delle soluzioni VEDLIoT.
Obiettivo
The ever increasing performance of computer systems in general and IoT systems, in particular, delivers the capability to solve increasingly challenging problems, pushing automation to improve the quality of our life. This triggers the need for a next-generation IoT architecture, satisfying the demand for key sectors like transportation (e.g. self-driving cars), industry (e.g. robotization or predictive maintenance), and our homes (e.g. assisted living). Such applications require building systems of enormous complexity, so that traditional approaches start to fail. The amount of data collected and processed is huge, the computational power required is very high, and the algorithms are too complex allowing for the computation of solutions within the tight time constraints. In addition, security, privacy, or robustness for such systems becomes a critical challenge.
An enabler that aims at delivering the required keystone is VEDLIoT, a Very Efficient Deep Learning IoT platform. Instead of traditional algorithms, artificial intelligence (AI) and deep learning (DL) are used to handle the large complexity. Due to the distributed approach, VEDLIoT allows dividing the application into smaller and more efficient components and work together in large collaborative systems in the Internet of Things (IoT), enabling AI-based algorithms that are distributed over IoT devices from edge to cloud.
In terms of hardware, VEDLIoT offers a platform, the Cognitive IoT platform, leveraging European technology, which can be easily configured to be placed at any level of the compute continuum starting from the sensor nodes and then edge to cloud. Driven by use cases in the key sectors of automotive, industrial, and smart homes, the platform is supported by cross-cutting aspects satisfying security and robustness. Overall, VEDLIoT offers a framework for the Next Generation Internet based on IoT devices required for collaboratively solving complex DL applications across a distributed system.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- natural sciencescomputer and information sciencesinternetinternet of things
- social sciencessociologyindustrial relationsautomation
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencescomputer and information sciencesartificial intelligencemachine learningdeep learning
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcontrol systemshome automation
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
RIA - Research and Innovation actionCoordinatore
33615 Bielefeld
Germania