Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

MAchinE Learning for Scalable meTeoROlogy and cliMate

Risultati finali

Final report on hardware performance benchmarking for ML solutions with the full implementation of the workflow tools of D2.2
Report on tests with a tangent linear and adjoint version of ML emulators with 4DVar
Report on software performance benchmarking for ML solutions from deliverable D1.4
Report on the survey of the workflow, the MAELSTROM protocol and ML requirements

Report on the survey of the workflow the MAELSTROM protocol and ML requirements

Report on hardware performance benchmarking for ML solutions from D1.3 on a number of hardware configurations
Report on hardware performance benchmarking for simplistic ML solutions for benchmark data sets in D1.2 on existing hardware solutions

Report on hardware performance benchmarking for simplistic ML solutions for benchmark data sets in D12 on existing hardware solutions

Report on a survey of MAELSTROM applications and ML tools and architectures
Plan for Dissemination and Communication
Initial list of hardware related requirements for ML solutions in W&C

Initial list of hardware related requirements for ML solutions in WC

Report on software performance benchmarking for ML solutions from deliverable D1.3

Report on software performance benchmarking for ML solutions from deliverable D13

Plan for Gender Balance
Report on the application of ML solutions within the W&C workflow
Report on solution design and architecture blueprint
Roadmap analysis of technologies relevant for ML solutions in W&C

Roadmap analysis of technologies relevant for ML solutions in WC

Report on improved data processing tools, and the weather data loading pipeline designed for large-scale deep learning training for the benchmark datasets from Deliverable D1.1

Pubblicazioni

Almost 5 years of deep learning in Earth system modelling – where do we come from and where do we go

Autori: Dueben, Peter
Pubblicato in: 2022
Editore: Zenodo
DOI: 10.5281/zenodo.7108876

Stochastic downscaling of meteorological fields with deep neural networks

Autori: Langguth, Michael; Gong, Bing; Ji, Yan; Mozaffari, Amirpasha; Schultz, Martin
Pubblicato in: Living Planet Symposium 2022, LPS2022, Bonn, Germany, 2022-05-23 - 2022-05-27, Numero 1, 2022
Editore: Living Planet Symposium 2022

Clairvoyant prefetching for distributed machine learning I/O

Autori: Nikoli Dryden; Roman Böhringer; Tal Ben-Nun; Torsten Hoefler
Pubblicato in: SC '21: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2021
Editore: Association for Computing Machinery New York, NY, United States
DOI: 10.48550/arxiv.2101.08734

efficiently training large-scale neural networks with bidirectional pipelines

Autori: Shigang Li; Torsten Hoefler
Pubblicato in: SC, 2022, ISBN 9781450384421
Editore: Association for Computing Machinery New York, NY, United States
DOI: 10.1145/3458817.3476145

Near-optimal sparse allreduce for distributed deep learning

Autori: Li, Shigang; Hoefler, Torsten
Pubblicato in: Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '22), 2022
Editore: ACM
DOI: 10.1145/3503221.3508399

Neural Parameter Allocation Search

Autori: Bryan A. Plummer, Nikoli Dryden, Julius Frost, Torsten Hoefler, Kate Saenko
Pubblicato in: ICLR 2022, 2022
Editore: ICLR
DOI: 10.48550/arxiv.2006.10598

Overview of State of the Art Use of ML/AI for Earth System Science

Autori: Dueben
Pubblicato in: 2022
Editore: Zenodo
DOI: 10.5281/zenodo.7081282

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations

Autori: Cummins, Chris; Fisches, Zacharias V.; Ben-Nun, Tal; Hoefler, Torsten; O'Boyle, Michael F P; Leather, Hugh
Pubblicato in: Cummins , C , Fisches , Z V , Ben-Nun , T , Hoefler , T , O'Boyle , M F P & Leather , H 2021 , PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations . in Proceedings of the 38th International Conference on Machine Learning . Proceedings of Machine Learning Research , vol. 139 , pp. 2244-2253 , Thirty-eighth International Conference on Machine Learning , 1, Numero 1, 2021
Editore: 38th International Conference on Machine Learning

High-Performance and Programmable Attentional Graph Neural Networks with Global Tensor Formulations

Autori: Maciej Besta; Pawel Renc; Robert Gerstenberger; Paolo Sylos Labini; Alexandros Ziogas; Tiancheng Chen; Lukas Gianinazzi; Florian Scheidl; Kalman Szenes; Armon Carigiet; Patrick Iff; Grzegorz Kwasniewski; Raghavendra Kanakagiri; Chio Ge; Sammy Jaeger; Jarosław Wąs; Flavio Vella; Torsten Hoefler
Pubblicato in: SC '23: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Numero 1, 2023, ISBN 979-8-4007-0109-2
Editore: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
DOI: 10.1145/3581784.3607067

Machine Learning for Weather and Predictions

Autori: Dueben
Pubblicato in: 2022
Editore: Zenodo
DOI: 10.5281/zenodo.7081333

Machine Learning for Weather and Climate Prediction

Autori: Dueben, Peter
Pubblicato in: 2022
Editore: Zenodo
DOI: 10.5281/zenodo.6792121

A Data-Centric Optimization Framework for Machine Learning

Autori: Oliver Rausch; Tal Ben-Nun; Nikoli Dryden; Andrei Ivanov; Shigang Li; Torsten Hoefler
Pubblicato in: ICS '22: Proceedings of the 36th ACM International Conference on Supercomputing, 2022, ISBN 9781450392815
Editore: Association for Computing Machinery New York, NY, United States
DOI: 10.48550/arxiv.2110.10802

Machine Learning in Weather and Climate Modelling

Autori: Dueben
Pubblicato in: 2021
Editore: Zenodo
DOI: 10.5281/zenodo.7081199

Challenges and Limitations of Machine Learning for Atmospheric Sciences

Autori: Dueben
Pubblicato in: 2022
Editore: Zenodo
DOI: 10.5281/zenodo.7081632

Productive Performance Engineering for Weather and Climate Modeling with Python

Autori: T. Ben-Nun, L. Groner, F. Deconinck, T. Wicky, E. Davis, J. Dahm, O. Elbert, R. George, J. McGibbon, L. Trümper, E. Wu, O. Fuhrer, T. Schulthess, T. Hoefler
Pubblicato in: SC'22, 2022
Editore: SC'22

Spatial Mixture-of-Experts

Autori: N. Dryden, T. Hoefler
Pubblicato in: NeurIPS'22, 2022
Editore: Neural Information Processing Systems 35

Productive Performance Engineering for Weather and Climate Modeling with Python

Autori: Ben-Nun, Tal; Groner, Linus; Deconinck, Florian; Wicky, Tobias; Davis, Eddie; Dahm, Johann; Elbert, Oliver D.; George, Rhea; McGibbon, Jeremy; Trümper, Lukas; Wu, Elynn; Fuhrer, Oliver; Schulthess, Thomas; Hoefler, Torsten
Pubblicato in: SC22: International Conference for High Performance Computing, Networking, Storage and Analysis, Numero 41, 2022, ISSN 2331-8422
Editore: ArXiv.org
DOI: 10.1109/sc41404.2022.00078

Machine Learning at ECMWF

Autori: Peter Dueben
Pubblicato in: 2022
Editore: Zenodo
DOI: 10.5281/zenodo.7100588

The Graph Database Interface: Scaling Online Transactional and Analytical Graph Workloads to Hundreds of Thousands of Cores

Autori: Maciej Besta; Robert Gerstenberger; Marc Fischer; Michal Podstawski; Nils Blach; Berke Egeli; Georgy Mitenkov; Wojciech Chlapek; Marek Michalewicz; Hubert Niewiadomski; Juergen Mueller; Torsten Hoefler
Pubblicato in: SC '23: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Numero 1, 2023, ISBN 979-8-4007-0109-2
Editore: Proceedings of the International Conference for High Performance Computing
DOI: 10.1145/3581784.3607068

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations

Autori: Cummins, Chris; Fisches, Zacharias V.; Ben-Nun, Tal; Hoefler, Torsten; O'Boyle, Michael F P; Leather, Hugh
Pubblicato in: Cummins , C , Fisches , Z V , Ben-Nun , T , Hoefler , T , O'Boyle , M F P & Leather , H 2021 , PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations . in Proceedings of the 38th International Conference on Machine Learning . Proceedings of Machine Learning Research , vol. 139 , pp. 2244-2253 , International Conference on Machine Learning 2021 , 1/07/21 ., Numero vol. 139, PMLR, pp. 2244-2253,, 2021, ISSN 2640-3498
Editore: PMLR

Machine learning emulation of gravity wave drag in numerical weather forecasting

Autori: Matthew Chantry; Sam Hatfield; Peter Dueben; Inna Polichtchouk; Tim Palmer
Pubblicato in: Journal of advances in modeling earth systems, Numero 3, 2021, ISSN 1942-2466
Editore: American Geophysical Union
DOI: 10.1029/2021ms002477

AtmoRep: A stochastic model of atmosphere dynamics using large scale representation learning

Autori: Lessig, Christian; Luise, Ilaria; Gong, Bing; Langguth, Michael; Stadtler, Scarlet; Schultz, Martin
Pubblicato in: arXiv, Numero 37, 2023, ISSN 2331-8422
Editore: USA
DOI: 10.48550/arxiv.2308.13280

CLGAN: a generative adversarial network (GAN)-based video prediction model for precipitation nowcasting

Autori: Y. Ji; Y. Ji; B. Gong; M. Langguth; A. Mozaffari; X. Zhi
Pubblicato in: Geoscientific Model Development, Vol 16, Pp 2737-2752 (2023), Numero 1, 2023, ISSN 1991-959X
Editore: Copernicus Gesellschaft mbH
DOI: 10.5194/gmd-16-2737-2023

HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers

Autori: Besta, Maciej; Catarino, Afonso Claudino; Gianinazzi, Lukas; Blach, Nils; Nyczyk, Piotr; Niewiadomski, Hubert; Hoefler, Torsten
Pubblicato in: arXiv, Numero 34, 2023, ISSN 2331-8422
Editore: arXiv
DOI: 10.48550/arxiv.2311.18526

Deep Learning to Estimate Model Biases in an Operational NWP Assimilation System

Autori: Patrick Laloyaux1, Thorsten Kurth2, Peter Dominik Dueben1, and David Hall
Pubblicato in: Journal of Advances in Modeling Earth Systems, Numero 19422466, 2022, ISSN 1942-2466
Editore: American Geophysical Union
DOI: 10.1029/2022ms003016

Improving Medium-Range Ensemble Weather Forecasts with Hierarchical Ensemble Transformers

Autori: Zied Ben Bouallègue; Jonathan A. Weyn; Mariana C. A. Clare; Jesper Dramsch; Peter Dueben; Matthew Chantry
Pubblicato in: Artificial Intelligence for the Earth Systems, Numero 34, 2023, ISSN 2769-7525
Editore: Artificial Intelligence for the Earth Systems
DOI: 10.1175/aies-d-23-0027.1

Deep learning for quality control of surface physiographic fields using satellite Earth observations

Autori: Tom Kimpson; Margarita Choulga; Matthew Chantry; Gianpaolo Balsamo; Souhail Boussetta; Peter Dueben; Tim Palmer
Pubblicato in: eISSN: 1607-7938, Numero 34, 2023, ISSN 1027-5606
Editore: European Geophysical Society
DOI: 10.5194/hess-27-4661-2023

Statistical Modeling of 2-m Temperature and 10-m Wind Speed Forecast Errors

Autori: Ben-Bouallegue, Zied; Cooper, Fenwick; Chantry, Matthew; Düben, Peter; Bechtold, Peter; Sandu, Irina
Pubblicato in: Monthly Weather Review, Numero 1, 2023, ISSN 1520-0493
Editore: Monthly Weather Review
DOI: 10.1175/mwr-d-22-0107.1

Machine Learning Emulation of 3D Cloud Radiative Effects

Autori: David Meyer; Robin J. Hogan; Peter Dueben; Shannon Mason
Pubblicato in: Machine Learning Emulation of 3D Cloud Radiative Effects, Numero 2, 2022, ISSN 1942-2466
Editore: American Geophysical Union
DOI: 10.1029/2021ms002550

Neural Graph Databases

Autori: Besta, Maciej; Iff, Patrick; Scheidl, Florian; Osawa, Kazuki; Dryden, Nikoli; Podstawski, Michal; Chen, Tiancheng; Hoefler, Torsten
Pubblicato in: arXiv, Numero 1, 2022, ISSN 2331-8422
Editore: arXiv
DOI: 10.48550/arxiv.2209.09732

PipeFisher: Efficient Training of Large Language Models Using Pipelining and Fisher Information Matrices

Autori: Osawa, Kazuki; Li, Shigang; Hoefler, Torsten
Pubblicato in: arXiv, Numero 30, 2022, ISSN 2331-8422
Editore: arXiv
DOI: 10.48550/arxiv.2211.14133

Compressing multidimensional weather and climate data into neural networks

Autori: Huang, Langwen; Hoefler, Torsten
Pubblicato in: arXiv, Numero 4, 2023, ISSN 2331-8422
Editore: arXiv
DOI: 10.48550/arxiv.2210.12538

Compressing atmospheric data into its real information content.

Autori: Milan Klöwer, Miha Razinger, Juan J. Dominguez, Peter D. Düben & Tim N. Palmer
Pubblicato in: Nature Computational Science, Numero 26628457, 2021, Pagina/e Nat Comput Sci 1, 713–724 (2021), ISSN 2662-8457
Editore: Nature Computational Science
DOI: 10.1038/s43588-021-00156-2

Machine Learning Emulation of Urban Land Surface Processes

Autori: David Meyer1,2, Sue Grimmond1, Peter Dueben3, Robin Hogan1,3, and Maarten van Reeuwijk2
Pubblicato in: Journal of Advances in Modeling Earth Systems, Numero 19422466, 2021, ISSN 1942-2466
Editore: American Geophysical Union
DOI: 10.1029/2021ms002744

Temperature forecasting by deep learning methods

Autori: Gong, Bing; Langguth, Michael; Ji, Yan; Mozaffari, Amirpasha; Stadtler, Scarlet; Mache, Karim; Schultz, Martin G.
Pubblicato in: Geoscientific Model Development, Vol 15, Pp 8931-8956 (2022), Numero 1, 2022, ISSN 1991-959X
Editore: Copernicus Gesellschaft mbH
DOI: 10.5194/gmd-2021-430

Cached Operator Reordering: A Unified View for Fast GNN Training

Autori: Bazinska, Julia; Ivanov, Andrei; Ben-Nun, Tal; Dryden, Nikoli; Besta, Maciej; Shen, Siyuan; Hoefler, Torsten
Pubblicato in: arXiv, Numero 35, 2023, ISSN 2331-8422
Editore: arXiv
DOI: 10.48550/arxiv.2308.12093

Spatial Mixture-of-Experts

Autori: Dryden, Nikoli; Hoefler, Torsten
Pubblicato in: Advances in Neural Information Processing Systems 35, Numero 1, 2022, ISSN 2331-8422
Editore: arXiv
DOI: 10.48550/arxiv.2211.13491

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers

Autori: Frantar, Elias; Ashkboos, Saleh; Hoefler, Torsten; Alistarh, Dan
Pubblicato in: arXiv, Numero 1, 2022, ISSN 2331-8422
Editore: arXiv
DOI: 10.48550/arxiv.2210.17323

Challenges and Benchmark Datasets for Machine Learning in the Atmospheric Sciences: Definition, Status, and Outlook

Autori: Peter D. Dueben1, Martin G. Schultz2, Matthew Chantry1, David John Gagne II3, David Matthew Hall4, and Amy McGovern5
Pubblicato in: Artificial Intelligence for the Earth Systems, Numero 27697525, 2022, ISSN 2769-7525
Editore: American Meteorological Society
DOI: 10.1175/aies-d-21-0002.1

STen: Productive and Efficient Sparsity in PyTorch

Autori: Ivanov, Andrei; Dryden, Nikoli; Ben-Nun, Tal; Ashkboos, Saleh; Hoefler, Torsten
Pubblicato in: arXiv, Numero 40, 2023, ISSN 2331-8422
Editore: arXiv
DOI: 10.48550/arxiv.2304.07613

A Generative Deep Learning Approach to Stochastic Downscaling of Precipitation Forecasts

Autori: Harris, Lucy; McRae, Andrew T. T.; Chantry, Matthew; Dueben, Peter D.; Palmer, Tim N.
Pubblicato in: Crossref, Numero 33, 2022, ISSN 1942-2466
Editore: American Geophysical Union
DOI: 10.1029/2022ms003120

A High-Performance Design, Implementation, Deployment, and Evaluation of The Slim Fly Network

Autori: Blach, Nils; Besta, Maciej; De Sensi, Daniele; Domke, Jens; Harake, Hussein; Li, Shigang; Iff, Patrick; Konieczny, Marek; Lakhotia, Kartik; Kubicek, Ales; Ferrari, Marcel; Petrini, Fabrizio; Hoefler, Torsten
Pubblicato in: arXiv, Numero 32, 2023, ISSN 2331-8422
Editore: arXiv
DOI: 10.48550/arxiv.2310.03742

Building Tangent-Linear and Adjoint Models for Data Assimilation With Neural Networks

Autori: Sam Hatfield; Matthew Chantry; Peter Dueben; Philippe Lopez; Alan J. Geer; Tim Palmer
Pubblicato in: journal of advances in modeling earth systems, Numero 2, 2021, ISSN 1942-2466
Editore: American Geophysical Union
DOI: 10.1029/2021ms002521

A comparison of data-driven approaches to build low-dimensional ocean models

Autori: Niraj Agarwal; Dmitri Kondrashov; Dmitri Kondrashov; Peter Dueben; E. A. Ryzhov; Pavel Berloff; Pavel Berloff
Pubblicato in: journal of advances in modeling earth systmes, Numero 3, 2021, ISSN 1942-2466
Editore: American Geophysical Union
DOI: 10.1029/2021ms002537

Further analysis of cGAN: A system for Generative Deep Learning Post-processing of Precipitation

Autori: Cooper, Fenwick C.; McRae, Andrew T. T.; Chantry, Matthew; Antonio, Bobby; Palmer, Tim N.
Pubblicato in: Further analysis of cGAN: A system for Generative Deep Learning Post-processing of Precipitation, Numero 1, 2023, ISSN 1520-0493
Editore: arXiv
DOI: 10.48550/arxiv.2309.15689

Bridging observations, theory and numerical simulation of the ocean using machine learning

Autori: Maike Sonnewald; Maike Sonnewald; Maike Sonnewald; Redouane Lguensat; Daniel C. Jones; Peter Dueben; Julien Brajard; Venkatramani Balaji; Venkatramani Balaji
Pubblicato in: Environmental Research Letters, Numero 3, 2021, ISSN 1748-9326
Editore: Institute of Physics Publishing
DOI: 10.1088/1748-9326/ac0eb0

Machine Learning at ECMWF

Autori: Dueben
Pubblicato in: 2022
Editore: Zenodo
DOI: 10.5281/zenodo.7081735

ENS-10: A Dataset For Post-Processing EnsembleWeather Forecasts

Autori: Ashkboos, Saleh and Huang, Langwen and Dryden, Nikoli and Ben-Nun, Tal and Dueben, Peter and Gianinazzi, Lukas and Kummer, Luca and Hoefler, Torsten
Pubblicato in: 2022
Editore: arXiv
DOI: 10.48550/arxiv.2206.14786

Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization

Autori: Pacchiardi, Lorenzo and Adewoyin, Rilwan and Dueben, Peter and Dutta, Ritabrata
Pubblicato in: 2021
Editore: arXiv
DOI: 10.48550/arxiv.2112.08217

È in corso la ricerca di dati su OpenAIRE...

Si è verificato un errore durante la ricerca dei dati su OpenAIRE

Nessun risultato disponibile