Description du projet
Une innovation met en évidence l’activité et les propriétés corrélées des nanoparticules individuelles
Étudier des particules dont la taille est de l’ordre de quelques centaines d’atomes (des nanoparticules, ou NP) n’est pas chose aisée. Il est pourtant essentiel de caractériser l’activité intrinsèque de certaines NP et de la corréler à leurs propriétés afin de concevoir des NP destinées à certaines applications. Une de ces applications concerne notamment l’utilisation de NP à base de métaux de transition pour l’électrocatalyse, à la place des catalyseurs classiques à base de métaux rares. Le projet MITICAT, financé par l’UE, développe une technique permettant d’observer l’activité de certaines NP agissant comme catalyseurs d’une réaction lente mais essentielle pour la conversion des énergies renouvelables. Être capable de mesurer in situ l’activité intrinsèque et les propriétés physiques individuelles des NP pourrait déboucher sur un changement radical dans l’électrocatalyse et favoriser la transition vers les énergies renouvelables.
Objectif
Transition metal based nanoparticles (NPs) are envisioned as viable alternatives to the scarce precious metal based catalysts used today for renewable energy conversion. Yet, probing their intrinsic activity to establish property-activity relations and so to smartly design superior catalysts, is impeded by two limitations of existing electrocatalytic techniques. First, the integral assessment of ensembles of non-identical NPs prohibits the identification of intrinsic activity differences. Second, the unknown effects of additives required analyzing the activity of often poorly conductive transition metal oxides, e.g. during the oxygen evolution reaction (OER), prohibit the access to quantitative data and comparable benchmarks. Very recently, we have proposed single NP electrochemistry to overcome both limitations. We demonstrated that the electrocatalytic OER response of individual CoFe2O4 NPs can be assessed in the absence of additives. However, we have not been able to extract property-activity relations, as NP characterization was limited to ex situ data. The groundbreaking strategy of this work is to combine intrinsic activity and physical property measurements of individual NPs. Physical characterization will comprise different online and ex situ methods to gain comprehensive property information. Numerical simulations will allow us to extract quantitative kinetic data from the electrochemical studies, allowing us to provide quantitative benchmarks of intrinsic catalyst performance. Cycling of NPs in a microfluidic platform will enable degradation studies and systematic modification “on the fly”. Moving towards application conditions, catalyst-support interactions will be studied by stepwise immobilization of catalysts on substrates. As a result of revealing intrinsic property-activity relations in electrocatalysis and of elucidating catalyst-support interactions, we will gain the understanding urgently needed to disruptively change electrocatalyst devolopment.
Champ scientifique
- natural scienceschemical scienceselectrochemistry
- natural scienceschemical sciencesinorganic chemistryinorganic compounds
- natural scienceschemical sciencescatalysiselectrocatalysis
- engineering and technologynanotechnologynano-materials
- engineering and technologyenvironmental engineeringenergy and fuelsenergy conversion
Programme(s)
Thème(s)
Régime de financement
ERC-STG - Starting GrantInstitution d’accueil
44801 Bochum
Allemagne