Descripción del proyecto
Materializar el potencial de la computación cuántica en un dispositivo computacional fotónico
Los ordenadores cuánticos aprovechan las increíbles posibilidades de la mecánica cuántica para mejorar considerablemente la potencia de computación. Su potencial para superar la computación clásica, demostrando así lo que se conoce como supremacía cuántica, todavía no se ha logrado. Hace poco, el estudio de problemas computacionales que producen muestras a partir de distribuciones de probabilidad (problemas de muestreo cuántico o muestro de circuitos aleatorios) ha puesto de manifiesto un posible camino para demostrar la supremacía cuántica. Los circuitos aleatorios desarrollan rápidamente un entrelazamiento de largo alcance, lo cual dificulta en gran medida su simulación mediante algoritmos clásicos. Una manera prometedora de alcanzar una computación cuántica útil consiste en utilizar un modelo computacional híbrido que combine procesos cuánticos y clásicos. El proyecto PHOQUSING, financiado con fondos europeos, prevé aplicar este tipo de sistema computacional híbrido basado en la fotónica integrada avanzada, colocando así a Europa a la vanguardia de un ámbito emergente, competitivo y económicamente importante.
Objetivo
Randomness is a resource that enables applications such as efficient probabilistic algorithms, numerical integration, simulation, and optimization. In the last few years it was realized that quantum devices can generate probability distributions that are inaccessible with classical means. Hybrid Quantum Computational models combine classical processing with these quantum sampling machines to obtain computational advantage in some tasks. Moreover, NISQ (Noisy, Intermediate-Scale Quantum) technology may suffice to obtain this advantage in the near term, long before we can build large-scale, universal quantum computers. PHOQUSING aims to implement PHOtonic Quantum SamplING machines based on large, reconfigurable interferometers with active feedback, and state-of-the-art photon sources based both on quantum dots and parametric down-conversion. We will overview the different architectures enabling the generation of these hard-to-sample distributions using integrated photonics, optimizing the designs and studying the tolerance to errors. We will build two quantum sampling machines with different technologies, as a way to do cross-checks while exploiting all advantages of each platform. These machines will establish a new state-of-the-art in photonic reconfigurability, system complexity, and integration. Finally, we plan to perform first, proof-of-principle demonstrations of Hybrid Quantum Computation applications in optimization, machine learning, and graph theory. The PHOQUSING team includes long-term scientific collaborators who were among the first to demonstrate quantum photonic samplers; two of the leading European start-ups in the relevant quantum technologies; and theoretical experts in photonics and quantum information science. This project will help establish photonics as a leading new quantum computational technology in Europe, addressing the science-to-technology transition towards a new industrial sector with a large foreseeable economic impact.
Ámbito científico
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- natural sciencesmathematicspure mathematicsdiscrete mathematicsgraph theory
- natural sciencescomputer and information sciencesartificial intelligencemachine learning
- natural sciencesphysical sciencestheoretical physicsparticle physicsphotons
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-FETOPEN-2018-2019-2020-01
Régimen de financiación
RIA - Research and Innovation actionCoordinador
00185 Roma
Italia