Description du projet
Des composites thermoplastiques innovants pour les fuselages de nouvelle génération
Le fuselage de la nouvelle génération de gros avions de passagers (LPA) est actuellement en cours d’évaluation et pourrait tirer parti des composites thermoplastiques (TPC). Outre les avantages liés à leurs propriétés intrinsèques, les TPC ont le potentiel de combler l’écart entre les taux de production actuels et prévus. Toutefois, la production de TPC est confrontée à des défis importants, en particulier la fabrication de géométries complexes de haute qualité. Comme solution alternative aux thermodurcissables, le projet FRAMES, financé par l’UE, explorera une approche de fabrication d’un fuselage arrière intégral en thermoplastique avec des caractéristiques de conception critiques. Le projet s’appuiera sur un système de chauffage intelligent, des procédés de fabrication efficaces pour les raidisseurs et un outil auto-chauffant, introduisant un procédé innovant de co-consolidation à double courbure et à peau épaisse, avec toute sa structure de raidissement en une seule opération.
Objectif
The fuselage of the next generation of Large Passenger Aircrafts´ (LPA) will be made with thermoplastic (TP) composites. In fact, even if this kind of materials are being increasingly used in aerospace industry, as they contribute to lighter aircrafts and consequently to fuel consumption reduction, there are still some issues to be overcome until this becomes a reality.
The manufacturing complex forms of rear end section with continuous fibre-reinforced TP still poses a considerable challenge: higher processing temperatures and raw material costs, need of complex temperature-controlled tooling, etc. Automated fibre placement (AFP) is a workable alternative for more complicated TP Composites (TPC) shapes with varying part thickness (e.g. fuselage shells, wing and stabilizer torsion boxes and stringers), but one of the challenges is void removal, which is more difficult with TP than with thermosets.
FRAMES aims to fully define technical and cost performance of an optimized integral TP rear end manufacturing process with critical design features as an alternative to thermoset materials. Thanks to a self-heated tool with process driven heating zones and advanced lay up process simulation, FRAMES will be capable of predicting heating law for efficient TP-AFP, correlated with lay-up trials, mastering TP-stiffeners manufacturing process, optimizing co-consolidation cycle. Its main innovation relies on the co-consolidation of a double curved and thick skin with its entire stiffening structure in one shot.
FRAMES will support the spread of alternative heating process for thermoplastic AFP by developing a simulation tool able to predefine processing parameters of the most common aerospace grades thermoplastics. At the end, the advanced rear end (ARE) concept that will allow the savings (NRC and maintenance costs, higher integration level at lighter weight, etc.) will be easily applicable to other panels or structures with the same interface principle or same architecture
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- engineering and technologymechanical engineeringmanufacturing engineering
- engineering and technologymaterials engineeringcomposites
- engineering and technologymechanical engineeringvehicle engineeringaerospace engineeringaircraft
- natural sciencescomputer and information sciencessoftwaresoftware applicationssimulation software
- social scienceslaw
Mots‑clés
Programme(s)
Régime de financement
IA - Innovation actionCoordinateur
64210 Bidart
France
L’entreprise s’est définie comme une PME (petite et moyenne entreprise) au moment de la signature de la convention de subvention.