Projektbeschreibung
Sprachausgabelösung für die Luft
Sicherheit hat in der Luftfahrt oberste Priorität. Stetiger technologischer Fortschritt macht es immer einfacher, die Sicherheit des Personals und der Reisenden zu gewährleisten. Zu dieser Entwicklung zählt auch die Technologie der automatischen Sprachausgabe, die die Arbeitslast der Fluglotsinnen und Fluglotsen reduzieren und menschliche Fehler minimieren kann. Allerdings unterliegt die Spracherkennung, die Sprachinhalte in Text umwandelt, noch immer Einschränkungen, da es schwierig ist, mit den Akzenten der Lotsinnen und Lotsen sowie mit Abweichungen von der Standardterminologie umzugehen. Das EU-finanzierte Projekt HAAWAII wird eine zuverlässige, gegen Fehler unanfällige und anpassbare Lösung erforschen und entwickeln, welche die Sprachkommandos der Lotsinnen und Lotsen sowie der Pilotinnen und Piloten automatisch transkribiert. Das Projekt wird eine umfangreiche Datensammlung verwenden, um eine neue Palette an Modellen für die komplexen Umgebungen von Flügen von und nach Island sowie den Flughafen-Nahverkehrsbereich in London zu entwickeln, die auf verbesserte Spracherkennungsmodelle fokussiert sind.
Ziel
Advanced automation support developed in Wave 1 of SESAR IR includes using of automatic speech recognition (ASR) to reduce the amount of manual data inputs by air-traffic controllers. Evaluation of controllers’ feedback has been subdued due to the limited recognition performance of the commercial of the shell ASR engines that were used, even in laboratory conditions. The reasons for the unsatisfactory conclusions include e.g. inability to distinguish controllers’ accents, deviations from standard phraseology and limited real-time recognition performance. Past exploratory research funded project MALORCA, however, has shown (on restricted use-cases) that satisfactory performance can be reached with novel data-driven machine learning approaches.
Based on the results of MALORCA HAAWAII project aims to research and develop a reliable, error resilient and adaptable solution to automatically transcribe voice commands issued by both air-traffic controllers and pilots. The project will build on very large collection of data, organized with a minimum expert effort to develop a new set of models for complex environments of Icelandic en-route and London TMA. HAAWAII aims to perform proof-of-concept trials in challenging environments, i.e. to be directly connected with real-life data from ops room. As pilot read-back error detection is the main application, HAAWAII aims to significantly enhance the validity of the speech recognition models. The proposed work goes far beyond the work planned for the Wave 2 IR programme and will improve both safety and reduce controllers’ workload. The digitization of controller and pilot voice utterances can be used for a wide variety of safety and performance related benefits including, but not limiting to pre-fill entries into electronic flight strips and CPDLC messages. Another application demonstrated during proof-of-concept will be to objectively estimate controllers’ workload utilising digitized voice recordings of the complex London TMA.
Wissenschaftliches Gebiet
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
RIA - Research and Innovation actionKoordinator
51147 Koln
Deutschland