Project description
Towards a new era of energy flexibility
The increased share of renewable energy in the energy mix is causing the energy market to change. The shift towards decentralised and renewable energy production calls for revising the concept of virtual power plants (VPPs): cloud-based control centres that aggregate the capacities of heterogeneous distributed energy resources for the purposes of enhancing power generation and trading or selling power on the electricity market. VPPs need to be flexible to respond to day-ahead and intraday markets and react quickly when it comes to providing ancillary grid services. The EU-funded EdgeFLEX project will explore optimal architectures that will enable VPPs to offer both fast and slow dynamics control services. The proposed solutions could ultimately lead to greater market penetration as well as stable and secure supply of renewable energy sources.
Objective
With the dramatic growth of renewables, now is the time to revise the VPP concept. VPPs need to support not only the promotion of intermittent renewables (RES) but also the integration of all Distributed Energy Resources (DER) into the full scope of grid operations. Such a leap raises challenges: optimal combination of DER and RES in a new generation of VPPs is needed to jointly provide grid supportive flexibility with slow reaction time known from day-head and intra-day markets, as well as real-time reaction to provide fast frequency and inertial response and dynamic-phasor driven voltage control ancillary services. In a nutshell, in a DER-based power electronics-driven network VPPs need to play all the roles that synchronous machines play in a traditional system. Flexibility can be provided by going beyond electrochemical storage and exploring opportunities offered by Power2X or inverters. Demand Side Management or low-cost solutions such as Power2Heat could be deployed in a neighbourhood expanding the concept of VPPs to the concept of a Local Energy Communities. EdgeFLEX links technical solutions to societal expectations. Short reaction times can be addressed by 5G-powered edge clouds linking dispersed devices in near real-time. In this respect, a new concept of VPPs, with communications corresponding to multiple layers of dynamics, becomes possible. EdgeFLEX proposes a new architecture for VPPs deploying such a multi-layer solution, paving the way for a fully renewable energy system. VPPs are brought to a new level, enabling them to interact on markets offering various ancillary services to System Operators. EdgeFLEX will develop this next generation VPP concept and demonstrate it in the context of 3 field trials and lab tests. It will explore innovative optimisations, financial tools and business scenarios for VPPs and assess the economic and societal impact. It will actively work to remove barriers by contributing to standards and European level regulation.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Keywords
Programme(s)
Funding Scheme
RIA - Research and Innovation actionCoordinator
40549 Dusseldorf
Germany