Projektbeschreibung
Lithium-Ionen-Batterien der nächsten Generation zum Antrieb von Elektrofahrzeugen
Lithium-Ionen-Batterien sind die beliebtesten Energiequellen für den Verkehr der Zukunft. Die Erweiterung der Reichweite und das Ermöglichen eines schnellen Ladens spielen bei der Förderung der Einführung von Elektrofahrzeugen eine entscheidende Rolle. Das EU-finanzierte Projekt SeNSE will Lithium-Ionen-Batterien der nächsten Generation mit einer Silizium-Graphit-Verbundanode und einer nickelreichen NMC-Kathode (Nickel, Mangan, Cobalt) entwickeln, um so eine volumetrische Energiedichte von 750 Wh/Liter zu erreichen. Die neue Batterie soll zudem auch über ein Batteriemanagementsystem verfügen, das an dynamische Sensoren in der Batteriezelle gekoppelt ist, wodurch ein schnelleres Laden, eine verbesserte Nachhaltigkeit und Recyclingfähigkeit sowie niedrigere Produktionskosten ermöglicht werden.
Ziel
The SeNSE proposal aims at enabling next generation lithium-ion batteries with a silicon-graphite composite anode and a nickel-rich NMC cathode to reach 750 Wh/L. Cycling stability is the key challenge for the adoption of this cell chemistry. The objective is to reach 2000 deep cycles by (i) reducing the surface reactivity of the active materials by a combination of novel film-forming electrolyte additives and active materials coatings, (ii) compensating irreversible lithium losses during the first cycles employing pre-lithiated silicon and providing an on-demand reservoir of excess lithium in the cathode, (iii) identifying and controlling critical cycling parameters with data provided from in-cell sensors. Adaptive fast charging protocols will be integrated into the battery management system based on dynamic in-cell sensor data and by implementing thermal management concepts on materials and electrode level. To improve the sustainability of the battery and to lower production cost, the content of the critical raw materials cobalt and natural graphite will be reduced. Enabled by protective coatings, aqueous slurry processing will be developed for the cathode. Costs will be further lowered and energy density improved by the development of thinner textured current collector foils offering enhanced adhesion. The feasibility and scalability of the SeNSE battery technology with respect to the call targets will be demonstrated through 25 Ah pouch cell prototypes and a 1 kWh module. Scalability to the gigawatt scale and cost-effectiveness of the proposed solutions, including aspects of recycling and second-life use, will be continuously monitored via regular briefings led by Northvolt, which currently undertakes one of the most ambitious efforts to establish a European cell manufacturing plant at scale. To strengthen the European IP portfolio in the battery field, patent applications are the preferred way of dissemination of technology developed within SeNSE.
Wissenschaftliches Gebiet
- engineering and technologyenvironmental engineeringwaste managementwaste treatment processesrecycling
- natural scienceschemical scienceselectrochemistryelectric batteries
- engineering and technologyenvironmental engineeringmining and mineral processing
- engineering and technologymaterials engineeringcoating and films
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
Schlüsselbegriffe
Programm/Programme
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenUnterauftrag
H2020-LC-BAT-2019
Finanzierungsplan
RIA - Research and Innovation actionKoordinator
8600 Dubendorf
Schweiz