Description du projet
Une méthode non invasive pour vérifier la présence d’ulcères du pied diabétique
Environ 15 % des patients diabétiques développent une plaie ouverte, généralement située sur la plante du pied. Parmi ceux qui développent un ulcère du pied, 6 % seront hospitalisés. L’amputation est la conséquence la plus redoutée d’un ulcère du pied. Pour inverser cette tendance et contribuer à la prévention des ulcères du pied diabétique, le projet PHOOTONICS, financé par l’UE, mettra au point un dispositif non invasif, fiable et rentable basé sur la photonique. À domicile, ce dispositif non invasif sera utilisé pour surveiller la température du pied afin de prévenir et de détecter rapidement les ulcères du pied diabétique. L’objectif est de remplacer les approches actuelles, comme la biopsie des lésions cutanées, qui sont invasives et nécessitent une visite chez le médecin.
Objectif
Early prediction and management of Diabetic Foot Ulcers (DFUs) is an important health factor of Europe. Recent clinical trials have concluded that NIR sensing captures oxy(deoxy)haemoglobin (HbO2, Hb) and peripheral/ tissue oxygen saturations (StO2, SpO2), thermal Infrared-IR detects hyperthermia, among Regions of Interest (ROIs) and Mid-IR contains rich information about the proteomics, lipidomics and metabolomics (e.g. glucose). All these medical indices are important factors for early prediction of DFU.
Current medical approaches are i) invasive (e.g. skin lesion biopsy), ii) requires consumables, and iii) being operated by certified physicians (e.g. ultrasound and/or biopsy).
PHOOTONICS aims at developing a non-invasive, reliable and cost-effective photonics-driven device for DFU monitoring and management which can be applied for wide use. The project supports two versions: (i) the PHOOTONICS In-Home, used for DFU monitoring by patients and (ii) the PHOOTONICS PRO operated by physicians.
Reliability is achieved by optimizing i) passive Hyperspectral (HIS) NIR photo-detector, with an active tuneable diode illuminator for detecting SpO2/StO2, HbO2 and Hb, ii) a thermal-IR sensor of detecting hyperthermia/hypothermia distributions in ROIs and iii) a passive Mid-IR sensing with a Quantum Cascade Laser (QCL) optimized to capture additional tissue attributes such as proteomics (elastin, collagen) and metabolomics (glucose). Cost-effectiveness is achieved by introducing i) targeted photonics technologies for DFU, ii) implementing advanced signal processing/learning algorithms to increase the discrimination accuracy while maintaining hardware cost-benefit, (iii) developing a user-friendly framework operated by non-certified physicians, and even by patients (for the In-Home version), and (iv) minimising operational cost with our non-invasive device. Clinical studies are performed to validate the reliability of the new cost-effective device in real-life settings.
Champ scientifique
Not validated
Not validated
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteinsproteomics
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensorsoptical sensors
- social sciencessociologysocial issuessocial inequalities
- natural sciencesphysical sciencesopticslaser physics
Mots‑clés
Programme(s)
Régime de financement
IA - Innovation actionCoordinateur
01116 Vilnius
Lituanie
L’entreprise s’est définie comme une PME (petite et moyenne entreprise) au moment de la signature de la convention de subvention.