Description du projet
La technologie quantique améliore la lecture des données classiques
Les données classiques sont des informations stockées sur un disque dur, un CD-ROM ou tout autre type de mémoire numérique standard. Elles peuvent également être associées à d’autres systèmes physiques, tels que la structure des matériaux biomédicaux. Le projet QUARTET, financé par l’UE, permettra, à l’aide de ressources quantiques et de détecteurs complexes, d’améliorer la lecture des données informatiques, la reconnaissance des formes et même la détection radar. La reconnaissance quantique des formes pourrait avoir des applications notables à long terme en biologie et en médecine. Elle pourrait permettre d’analyser de manière non invasive des échantillons biologiques ou des tissus humains très fragiles, et d’identifier des modèles récurrents encore inconnus associés à la croissance bactérienne ou aux cellules cancéreuses. Par ailleurs, la mise au point d’un prototype de radar quantique fonctionnel pourrait avoir des applications majeures pour la détection et le suivi des aéronefs et d’autres technologies de sécurité.
Objectif
The general aim of this proposal is to exploit quantum information to develop new powerful methods for the retrieval and recognition of classical data from physical systems. More precisely, we aim at showing a substantial quantum-enhancement in several fundamental tasks: (1) the readout of classical data from digital memories (quantum reading); (2) the recognition of classical patterns (quantum pattern recognition); (3) the optical measurement of concentration in fragile biomedical samples (quantum bio-probing); and (4) the microwave detection of target objects (microwave quantum illumination or quantum radar). These objectives are realized starting from the optimization of a general theoretical model at their basis: quantum channel discrimination. This is then developed into technical aspects which directly support our experimental proof-of-principle demonstrations.
Our experimental prototypes could open the way to much more powerful and radically new forms of information and detection technologies, with direct benefit for science and the wider society. Thanks to the superior performances in the low energy regime, quantum reading may increase data-transfer rates and storage capacities of current digital memories by orders of magnitude. Quantum pattern recognition could have remarkable long-term applications in biology and medicine, in terms of non-invasive analysis of very fragile biological samples or human tissues, and better recognizing hidden patterns associated to bacterial growths or cancerous cells. Such results could provide future non-invasive techniques of medical imaging for private and public hospitals. Finally, the realization of a working prototype of a quantum radar may have non-trivial applications for the European security technology.
Champ scientifique
- social sciencessociologysocial issuessocial inequalities
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsradio technologyradar
- natural sciencescomputer and information sciencesartificial intelligencepattern recognition
- engineering and technologymedical engineeringdiagnostic imaging
Mots‑clés
Programme(s)
Régime de financement
RIA - Research and Innovation actionCoordinateur
YO10 5DD York North Yorkshire
Royaume-Uni