Project description
Monolithic low-cost colloid-based on-chip light sources
Silicon photonics are forming the backbone of next-generation on-chip technologies and optical telecommunications. Unlike the competing III-V semiconductor technology, silicon photonics promises far more cost-effective photonic integrated circuits (PICs). The EU-funded POSEIDON project will address the critical need for monolithic integration of on-chip light sources ready for mass production. Utilising active colloids that can self-organise into 3D structures, the project aims to develop nanoscale light sources of variable length that can be monolithically integrated into the back-end of PICs. Project activities will encompass the entire process chain from computer-aided design to controlled synthesis, hierarchical assembly, optoelectronic integration and device fabrication. Realising this breakthrough platform for generic PICs comprising monolithically integrated active colloidal components could boost Europe’s competitiveness in many sectors.
Objective
Silicon photonics made tremendous progress in the last decade and promises far more cost effective photonic integrated circuits (PICs) than competing III-V semiconductors. However, a monolithically integrable, mass-manufacturable light source is missing. All approaches of heterogeneous integration of III-V light sources are costly and not highly scalable, creating massive cost and complexity barriers for the commercialization of PICs. The ground-breaking aim of POSEIDON is to develop a radically new bottom-up approach towards multi-scale, on chip self-assembly of active colloids based on low cost colloid technology. For the first time this encompasses the entire process chain of computer-aided design, controlled synthesis, hierarchical assembly, optoelectronic integration and device fabrication. By controlling and designing self-assembly processes directly on a device, addressing length scales from nm to 100’s of μm simultaneously, our approach allows to fabricate functional nanophotonic components with 3D, single-nm resolution integrated into complex PICs. The ambitious goal of POSEIDON is to thereby develop electrically pumped light sources which can be monolithically integrated into the back-end of CMOS chips. This breakthrough overcomes the limitations of top-down PIC fabrication and tears down the massive cost and complexity barriers initially mentioned. The short term benefits can be quantum leaps in data center energy efficiency and network performance, enabled by the project targeting the usual Datacom wavelengths, and cheap yet powerful optical sensors. In the long run a revolutionary platform for generic PICs consisting of monolithically integrated active colloidal components (light sources and detectors), Si/Si nitride photonics and CMOS electronics can emerge from POSEIDON. This will transform Europe’s industrial landscape and provide sustainable solutions to societal challenges across ICT, quantum technologies, energy, environment, health and security.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencesphysical sciencescondensed matter physicssoft matter physics
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural scienceschemical sciencesinorganic chemistrymetalloids
Programme(s)
Funding Scheme
RIA - Research and Innovation actionCoordinator
52074 Aachen
Germany
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.