Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Majorana bound states in Ge/SiGe heterostructures

Descrizione del progetto

Alla ricerca di fermioni di Majorana elusivi su eterostrutture di silicio-germanio

Nel 1928, il fisico Paul Dirac predisse che ogni particella fondamentale nell’Universo ha un gemello identico ma con carica opposta. Sorge una domanda fondamentale: cosa succede se una particella è la sua stessa antiparticella? Ettore Majorana ha predetto la loro esistenza e sono state avanzate prove dell’esistenza di un tale stato della materia sotto forma di eccitazioni di quasiparticelle in dispositivi ibridi semiconduttore-superconduttore. Recenti esperimenti hanno trovato firme di fermioni di Majorana in dispositivi ibridi di nanofili superconduttori-semiconduttori. Le attività di ricerca si sono finora concentrate sui nanofili planari InAs e InSb. Finanziato nell’ambito del programma Marie Skłodowska-Curie, il progetto MaGnum cercherà gli stati delimitati da Majorana nelle eterostrutture Ge/SiGe. Queste eterostrutture dovrebbero facilitare l’individuazione degli stati elusivi legati a Majorana.

Obiettivo

Each particle has its antiparticle, and upon bringing them in close vicinity, they annihilate (they disappear). A fundamental question arises: what happens if a particle is its own antiparticle? Ettore Majorana predicted their existence and evidence has been put forward for the existence of such a state of matter in the form of quasiparticle excitations in hybrid semiconductor-superconductor devices. Research activites so far has concentrated on InAs nanowires, planar InAs and InSb nanowires. Theory suggests to look for Majorana bound states (MBS) in Germanium and I propose to use a novel yet promising material system, namely a Germanium/Silicon-Germanium heterostructure, to provide evidence for the topological state of matter leading to Majorana bound states (MBS). Using Ge/SiGe brings the advantage of a long mean free path, which will allow for a larger spatial separation of the MBS and facilitate the long anticipated but yet elusive detection of correlation of two MBS. Additionally, the planar geometry brings the possibility to couple the MBS to their environment, which will be important for their usage as topologically protected quantum bits for quantum computation. I propose to show step-by-step the ingredients necessary for a topological phase transition resulting in MBS. In particular, I will follow these steps: I will collaborate with G. Isella's group to develop a highly mobile two-dimensional hole gas and make it accessible for magneto-transport measurements. I will further confine the holes into a one-dimensional wire with tunable tunneling barriers at each end. I will test the presence of a strong spin-orbit interaction by measuring helical transport. I will induce superconducting order by coupling the wire to NbTiN contacts. Finally, I will test the presence of MBS with tunneling conductance measurements and use a proper geometry to show evidence of the correlation of two MBS at each end of the wire.

Coordinatore

INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Contribution nette de l'UE
€ 174 167,04
Indirizzo
Am Campus 1
3400 Klosterneuburg
Austria

Mostra sulla mappa

Regione
Ostösterreich Niederösterreich Wiener Umland/Nordteil
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 174 167,04